Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

14-03-2023

Machinability of High-Strength Fiber-Reinforced Polymer Textile Composites: A Review

Authors: H. S. Mali, P. Sharma

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The state-of-the-art of high-strength fiber-reinforced polymer (HSFRP) textile composites exhibit a great strength to weight ratio and a high stiffness, durability, damping properties, and resistance to wear and corrosion. These properties of HSFRP textile composites have led to their applications in the aviation, defense, marine, biomedical, automobile, and many other manufacturing sectors. The major difficulties observed during the machining of fibrous polymer textile composites is the rapid wear of cutting tools, the deterioration of machined surfaces, the thermal damage, delaminations, and the fiber pull-out. This article is an extensive review of the machining and machinability of HSFRP textile composites, followed by their processing techniques, advantages, and applications. It can provide an insight into selecting manufacturing strategies for these composite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials (2013). J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials (2013).
2.
go back to reference A. Dixit, H. S. Mali, and R. K. Misra, “Unit cell model of woven fabric textile composite for multiscale analysis,” Procedia Eng., 68, 352-358 (2013).CrossRef A. Dixit, H. S. Mali, and R. K. Misra, “Unit cell model of woven fabric textile composite for multiscale analysis,” Procedia Eng., 68, 352-358 (2013).CrossRef
3.
go back to reference R. M. Jones, Mechanics of Composite Materials, 1st ed., CRC Press (1998). R. M. Jones, Mechanics of Composite Materials, 1st ed., CRC Press (1998).
4.
go back to reference P. Thori, P. Sharma, and M. Bhargava, “An approach of composite materials in industrial machinery: advantages, disadvantages and applications,” Int. J. Res. Eng. Technol., 2, No. 12, 350-355 (2013).CrossRef P. Thori, P. Sharma, and M. Bhargava, “An approach of composite materials in industrial machinery: advantages, disadvantages and applications,” Int. J. Res. Eng. Technol., 2, No. 12, 350-355 (2013).CrossRef
5.
6.
go back to reference P. Sharma, P. Priyanka, H. S. Mali, and A. Dixit, “Geometric modeling and finite element analysis of kevlar monolithic and carbon-kevlar hybrid woven fabric unit cell,” Mater. Today Proc., 26, No. 2, 766-774 (2020).CrossRef P. Sharma, P. Priyanka, H. S. Mali, and A. Dixit, “Geometric modeling and finite element analysis of kevlar monolithic and carbon-kevlar hybrid woven fabric unit cell,” Mater. Today Proc., 26, No. 2, 766-774 (2020).CrossRef
7.
go back to reference K. K. Chawla, Composite Materials: Science and Engineering, 3rd ed., Springer (2012). K. K. Chawla, Composite Materials: Science and Engineering, 3rd ed., Springer (2012).
8.
go back to reference P. K. Mallick, Polymer Matrix Composites : Processing and Applications, CRC Press (2017). P. K. Mallick, Polymer Matrix Composites : Processing and Applications, CRC Press (2017).
9.
go back to reference S. Selvaraju and S. Ilaiyavel, “Applications of composites in marine industry,” J. Eng. Res. Stud., 2, No. 2, 89-91 (2011). S. Selvaraju and S. Ilaiyavel, “Applications of composites in marine industry,” J. Eng. Res. Stud., 2, No. 2, 89-91 (2011).
10.
go back to reference Y. Xiao, “Applications of FRP composites in concrete columns,” Adv. Struct. Eng., 7, No. 4, 335-343 (2004).CrossRef Y. Xiao, “Applications of FRP composites in concrete columns,” Adv. Struct. Eng., 7, No. 4, 335-343 (2004).CrossRef
11.
go back to reference U. Berardi and N. Dembsey, “Thermal and fire characteristics of FRP composites for architectural applications,” Polymers (Basel)., 7, No. 11, 2276-2289 (2015).CrossRef U. Berardi and N. Dembsey, “Thermal and fire characteristics of FRP composites for architectural applications,” Polymers (Basel)., 7, No. 11, 2276-2289 (2015).CrossRef
12.
go back to reference J. P. Davim, Machining Composites Materials, John Wiley & Sons (2013). J. P. Davim, Machining Composites Materials, John Wiley & Sons (2013).
13.
go back to reference P. Sharma and M. Bhargava, “Applications and characteristics of nanomaterials in industrial environment,” Int. J. Civ., Str., Env. Infrastr. Eng. Res. Dev., 3, 63-72 (2013). P. Sharma and M. Bhargava, “Applications and characteristics of nanomaterials in industrial environment,” Int. J. Civ., Str., Env. Infrastr. Eng. Res. Dev., 3, 63-72 (2013).
14.
go back to reference R. Teti, “Machining of composite materials,” CIRP Ann. — Manuf. Technol., 51, No. 2, 611-634 (2002). R. Teti, “Machining of composite materials,” CIRP Ann. — Manuf. Technol., 51, No. 2, 611-634 (2002).
15.
go back to reference P. Sharma, K. Pathak, and B. K. Sharma, “Role of CAD/CAM in designing, developing and manufacturing of new products,” Int. J. Res. Eng. Technol., 3, No. 6, 2321-7308 (2014). P. Sharma, K. Pathak, and B. K. Sharma, “Role of CAD/CAM in designing, developing and manufacturing of new products,” Int. J. Res. Eng. Technol., 3, No. 6, 2321-7308 (2014).
16.
go back to reference J. Y. Sheikh-Ahmad, Machining of Polymer Composites, Springer New York (2009).CrossRef J. Y. Sheikh-Ahmad, Machining of Polymer Composites, Springer New York (2009).CrossRef
17.
go back to reference P. Sharma and M. Bhargava, “Designing, implementation, evolution and execution of an intelligent manufacturing system,” Int. J. Recent Adv. Mech. Eng., 3, No. 3 (2014). P. Sharma and M. Bhargava, “Designing, implementation, evolution and execution of an intelligent manufacturing system,” Int. J. Recent Adv. Mech. Eng., 3, No. 3 (2014).
18.
go back to reference M. Rahman, S. Ramakrishna, J. R. S. Prakash, and D. C. G. Tan, “Machinability study of carbon fiber reinforced composite,” J. Mater. Process. Technol., 89, 292-297 (1999).CrossRef M. Rahman, S. Ramakrishna, J. R. S. Prakash, and D. C. G. Tan, “Machinability study of carbon fiber reinforced composite,” J. Mater. Process. Technol., 89, 292-297 (1999).CrossRef
19.
go back to reference M. K. N. Khairusshima and I. S. S. Sharifah, “Study on tool wear during milling cfrp under dry and chilled air machining,” Procedia Eng., 184, 506-517 (2017).CrossRef M. K. N. Khairusshima and I. S. S. Sharifah, “Study on tool wear during milling cfrp under dry and chilled air machining,” Procedia Eng., 184, 506-517 (2017).CrossRef
20.
go back to reference I.S.N.V.R. Prasanth, D.V. Ravishankar, and M. Manzoor-Hussain, “Comparative evaluation on milled surface quality of GFRP composites by different end mill tools,” Int. J. Mach. Mach. Mater., 19, No. 5, 483-504 (2017). I.S.N.V.R. Prasanth, D.V. Ravishankar, and M. Manzoor-Hussain, “Comparative evaluation on milled surface quality of GFRP composites by different end mill tools,” Int. J. Mach. Mach. Mater., 19, No. 5, 483-504 (2017).
21.
go back to reference M. R. Wisnom, “The role of delamination in failure of fibre-reinforced composites,” Trans. R. Soc. A, 370, No. 1965, 1850-1870 (2012). M. R. Wisnom, “The role of delamination in failure of fibre-reinforced composites,” Trans. R. Soc. A, 370, No. 1965, 1850-1870 (2012).
22.
go back to reference A. Dixit and H. S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A review,” Mech. Compos. Mater., 49, No. 1, 1-20 (2013).CrossRef A. Dixit and H. S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A review,” Mech. Compos. Mater., 49, No. 1, 1-20 (2013).CrossRef
23.
go back to reference P. Priyanka, A. Dixit, and H. S. Mali, “High-strength hybrid textile composites with carbon, kevlar, and e-glass fibers for impact-resistant structures. A review,” Mech. Compos. Mater., 53, No. 5, 685-704 (2017).CrossRef P. Priyanka, A. Dixit, and H. S. Mali, “High-strength hybrid textile composites with carbon, kevlar, and e-glass fibers for impact-resistant structures. A review,” Mech. Compos. Mater., 53, No. 5, 685-704 (2017).CrossRef
24.
go back to reference S. K. Golla and P. Prasanthi, “Micromechanical analysis of a hybrid composite-effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite,” Mater. Res. Express, 3, No. 11, 1-15 (2016).CrossRef S. K. Golla and P. Prasanthi, “Micromechanical analysis of a hybrid composite-effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite,” Mater. Res. Express, 3, No. 11, 1-15 (2016).CrossRef
25.
go back to reference G. Acikbas and B. Yaman, “Wear response of glass fiber and ceramic tile-reinforced hybrid epoxy matrix composites,” Iran. Polym. J., 28, No. 1, 21-29 (2019).CrossRef G. Acikbas and B. Yaman, “Wear response of glass fiber and ceramic tile-reinforced hybrid epoxy matrix composites,” Iran. Polym. J., 28, No. 1, 21-29 (2019).CrossRef
26.
go back to reference P. Sharma, H. S. Mali, and A. Dixit, “Mechanical behavior and fracture toughness characterization of high strength fiber reinforced polymer textile composites,” Iran. Polym. J., 30, No. 2, 193-233 (2021).CrossRef P. Sharma, H. S. Mali, and A. Dixit, “Mechanical behavior and fracture toughness characterization of high strength fiber reinforced polymer textile composites,” Iran. Polym. J., 30, No. 2, 193-233 (2021).CrossRef
27.
go back to reference J. Reeder, K. Song, P. Chunchu, and D. Ambur, “Postbuckling and growth of delaminations in composite plates subjected to axial compression,” in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1-10 (2002). J. Reeder, K. Song, P. Chunchu, and D. Ambur, “Postbuckling and growth of delaminations in composite plates subjected to axial compression,” in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1-10 (2002).
28.
go back to reference Y. Swolfs, L. Gorbatikh, and I. Verpoest, “Fibre hybridisation in polymer composites: A review,” Compos. Part A Appl. Sci. Manuf., 67, 181-200 (2014).CrossRef Y. Swolfs, L. Gorbatikh, and I. Verpoest, “Fibre hybridisation in polymer composites: A review,” Compos. Part A Appl. Sci. Manuf., 67, 181-200 (2014).CrossRef
29.
go back to reference M. Davallo, “Factors affecting fracture behaviour of composite materials,” Int. J. ChemTech Res., 2, No. 4, 2125-2130 (2010). M. Davallo, “Factors affecting fracture behaviour of composite materials,” Int. J. ChemTech Res., 2, No. 4, 2125-2130 (2010).
30.
go back to reference T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites — A review,” J. Reinf. Plast. Compos., 33, No. 13, 1258-1275 (2014).CrossRef T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites — A review,” J. Reinf. Plast. Compos., 33, No. 13, 1258-1275 (2014).CrossRef
31.
go back to reference C. Soutis, “Fibre reinforced composites in aircraft construction,” Prog. Aerosp. Sci., 41, No. 2, 143-151 (2005).CrossRef C. Soutis, “Fibre reinforced composites in aircraft construction,” Prog. Aerosp. Sci., 41, No. 2, 143-151 (2005).CrossRef
32.
go back to reference K. Shirvanimoghaddam et al., “Carbon fiber reinforced metal matrix composites: Fabrication processes and properties,” Compos. Part A Appl. Sci. Manuf., 92, 70-96 (2017).CrossRef K. Shirvanimoghaddam et al., “Carbon fiber reinforced metal matrix composites: Fabrication processes and properties,” Compos. Part A Appl. Sci. Manuf., 92, 70-96 (2017).CrossRef
33.
go back to reference D. H. Xiang, G. F. Ma, Y. L. Zhang, Q. Qin, Y. F. Wang, and H. T. Liu, “Experimental investigation on drilling of carbon fibre reinforced plastic using diamond-coated drill,” Mater. Res. Innov., 19, S9-95-S9-99 (2015). D. H. Xiang, G. F. Ma, Y. L. Zhang, Q. Qin, Y. F. Wang, and H. T. Liu, “Experimental investigation on drilling of carbon fibre reinforced plastic using diamond-coated drill,” Mater. Res. Innov., 19, S9-95-S9-99 (2015).
34.
go back to reference R. Karakuzu, Z. Aslan, and B. Okutan, “The effect of ply number, orientation angle and bonding type on residual stresses of woven steel fiber reinforced thermoplastic laminated composite plates subjected to transverse uniform load,” Compos. Sci. Technol., 64, No. 7-8, 1049-1056 (2004).CrossRef R. Karakuzu, Z. Aslan, and B. Okutan, “The effect of ply number, orientation angle and bonding type on residual stresses of woven steel fiber reinforced thermoplastic laminated composite plates subjected to transverse uniform load,” Compos. Sci. Technol., 64, No. 7-8, 1049-1056 (2004).CrossRef
35.
go back to reference S. Rajesh, B. Vijayaramnath, C. Elanchezhian, N. Aravind, V. V. Rahul, and S. Sathish, “Analysis of mechanical behavior of glass fibre/Al2O3-SiC reinforced polymer composites,” Procedia Eng., 97, 598-606 (2014).CrossRef S. Rajesh, B. Vijayaramnath, C. Elanchezhian, N. Aravind, V. V. Rahul, and S. Sathish, “Analysis of mechanical behavior of glass fibre/Al2O3-SiC reinforced polymer composites,” Procedia Eng., 97, 598-606 (2014).CrossRef
36.
go back to reference F. Mata, V. N. Gaitonde, S. R. Karnik, and J. P. Davim, “Influence of cutting conditions on machinability aspects of PEEK, PEEK CF 30 and PEEK GF 30 composites using PCD tools,” J. Mater. Process. Technol., 209, No. 4, 1980-1987 (2009).CrossRef F. Mata, V. N. Gaitonde, S. R. Karnik, and J. P. Davim, “Influence of cutting conditions on machinability aspects of PEEK, PEEK CF 30 and PEEK GF 30 composites using PCD tools,” J. Mater. Process. Technol., 209, No. 4, 1980-1987 (2009).CrossRef
37.
go back to reference D. Che, I. Saxena, P. Han, P. Guo, and K. F. Ehmann, “Machining of carbon fiber reinforced plastics/polymers: A literature review,” J. Manuf. Sci. Eng. Trans. ASME, 136, No. 3, 1-22 (2014).CrossRef D. Che, I. Saxena, P. Han, P. Guo, and K. F. Ehmann, “Machining of carbon fiber reinforced plastics/polymers: A literature review,” J. Manuf. Sci. Eng. Trans. ASME, 136, No. 3, 1-22 (2014).CrossRef
38.
go back to reference M. S. Keizo Sakuma, Yoshimichi Yokoo, “Study on Drilling of Reinforced Plastics (GFRP and CFRP): Relation between Tool Material and Wear Behavior,” Bull. JSME, 27, 1237-1244 (1984). M. S. Keizo Sakuma, Yoshimichi Yokoo, “Study on Drilling of Reinforced Plastics (GFRP and CFRP): Relation between Tool Material and Wear Behavior,” Bull. JSME, 27, 1237-1244 (1984).
39.
go back to reference M. S. Sureshkumar, D. Lakshmanan, and A. Murugarajan, “Experimental investigation and mathematical modelling of drilling on GFRP composites,” Mater. Res. Innov., 18, No. sup1, S1-94-S1-97 (2014). M. S. Sureshkumar, D. Lakshmanan, and A. Murugarajan, “Experimental investigation and mathematical modelling of drilling on GFRP composites,” Mater. Res. Innov., 18, No. sup1, S1-94-S1-97 (2014).
40.
go back to reference D. Bhattacharyya, M. N. Allen, and S. J. Mander, “Cryogenic Machining Of Kevlar Composites,” Mater. Manuf. Process., 8, No. 6, 631-651 (1993).CrossRef D. Bhattacharyya, M. N. Allen, and S. J. Mander, “Cryogenic Machining Of Kevlar Composites,” Mater. Manuf. Process., 8, No. 6, 631-651 (1993).CrossRef
41.
go back to reference R. S. Davé and A. C. Loos, Processing of composites, Hanser Publishers (2000). R. S. Davé and A. C. Loos, Processing of composites, Hanser Publishers (2000).
42.
go back to reference R. R. Nagavally, “Composite materials — history, types, fabrication techniques, advantages, and applications,” 29th IRF Int. Conf., 5, No. 9, 82-87 (2016). R. R. Nagavally, “Composite materials — history, types, fabrication techniques, advantages, and applications,” 29th IRF Int. Conf., 5, No. 9, 82-87 (2016).
43.
go back to reference D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers (Basel)., 11, No. 10 (2019). D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers (Basel)., 11, No. 10 (2019).
44.
go back to reference K. G. Swift and J. D. Booker, Plastics and composites processing, Ch. 5 in: Manuf. Process Selection Handbook, Elsevier, 141-174 (2013). K. G. Swift and J. D. Booker, Plastics and composites processing, Ch. 5 in: Manuf. Process Selection Handbook, Elsevier, 141-174 (2013).
45.
go back to reference S. Erden and K. Ho, Fiber reinforced composites, Ch. 2 in: Fiber Technol. Fiber-Reinforced Compos., Woodhead Publ., 51-79 (2017). S. Erden and K. Ho, Fiber reinforced composites, Ch. 2 in: Fiber Technol. Fiber-Reinforced Compos., Woodhead Publ., 51-79 (2017).
46.
go back to reference K. T. Hsiao and D. Heider, Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites, Ch. 10.1 in: Manuf. Tech. Polym. Matrix Compos., Woodhead Publ. Series in Compos. Sci. and Eng., 310-347 (2012). K. T. Hsiao and D. Heider, Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites, Ch. 10.1 in: Manuf. Tech. Polym. Matrix Compos., Woodhead Publ. Series in Compos. Sci. and Eng., 310-347 (2012).
47.
go back to reference M. K. Yoon, J. Baidoo, J. W. Gillespie, and D. Heider, “Vacuum assisted resin transfer molding (VARTM) process incorporating gravitational effects: a closed-form solution,” J. Compos. Mater., 39, No. 24, 2227-2242 (2005).CrossRef M. K. Yoon, J. Baidoo, J. W. Gillespie, and D. Heider, “Vacuum assisted resin transfer molding (VARTM) process incorporating gravitational effects: a closed-form solution,” J. Compos. Mater., 39, No. 24, 2227-2242 (2005).CrossRef
48.
go back to reference J. P. Greene, Compression Molding, Ch. 16 in: Automotive Plastics and Composites, Elsevier Inc. All, 265-278 (2021). J. P. Greene, Compression Molding, Ch. 16 in: Automotive Plastics and Composites, Elsevier Inc. All, 265-278 (2021).
49.
go back to reference R. A. Tatara, Compression Molding, Ch. 17 in: Applied Plastics Engineering. Handbook: Process. Mater. Appl. Second Ed. — Elsevier, 291-320 (2017). R. A. Tatara, Compression Molding, Ch. 17 in: Applied Plastics Engineering. Handbook: Process. Mater. Appl. Second Ed. — Elsevier, 291-320 (2017).
50.
go back to reference C. H. Park and W. I. Lee, Compression molding in polymer matrix composites, Ch. 3 in: Manuf. Tech. Polym. Matrix Compos., Woodhead Publ., 47-94 (2012). C. H. Park and W. I. Lee, Compression molding in polymer matrix composites, Ch. 3 in: Manuf. Tech. Polym. Matrix Compos., Woodhead Publ., 47-94 (2012).
51.
go back to reference H. N. Dhakal and S. O. Ismail, Design, manufacturing processes and their effects on bio-composite properties, Ch. 4 in: Sustainable Composites for Lightweight Applications, Woodhead Publ., 121-177 (2021). H. N. Dhakal and S. O. Ismail, Design, manufacturing processes and their effects on bio-composite properties, Ch. 4 in: Sustainable Composites for Lightweight Applications, Woodhead Publ., 121-177 (2021).
52.
go back to reference R. Alagirusamy, Hybrid yarns for thermoplastic composites, in: Technical Textiles Yarns, CRC Press, 387-428 (2010). R. Alagirusamy, Hybrid yarns for thermoplastic composites, in: Technical Textiles Yarns, CRC Press, 387-428 (2010).
53.
go back to reference J. Throne, Thermoforming, Ch. 16 in: Applied Plastics Engineering. Handbook, Elsevier, 333-358 (2011). J. Throne, Thermoforming, Ch. 16 in: Applied Plastics Engineering. Handbook, Elsevier, 333-358 (2011).
54.
go back to reference A. Riley, Plastics manufacturing processes for packaging materials, Ch. 14 in: Packaging Technology, Woodhead Publ., 310-360 (2012). A. Riley, Plastics manufacturing processes for packaging materials, Ch. 14 in: Packaging Technology, Woodhead Publ., 310-360 (2012).
55.
go back to reference B. Biswas, N. R. Bandyopadhyay, and A. Sinha, Mechanical and dynamic mechanical properties of unsaturated polyester resin-based composites, Ch. 16 in: Unsaturated Polyest. Resins: Fundam. Des. Fabr. Appl. — Elsevier, 407-434 (2019). B. Biswas, N. R. Bandyopadhyay, and A. Sinha, Mechanical and dynamic mechanical properties of unsaturated polyester resin-based composites, Ch. 16 in: Unsaturated Polyest. Resins: Fundam. Des. Fabr. Appl. — Elsevier, 407-434 (2019).
56.
go back to reference A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, Polyethylene and polypropylene matrix composites for biomedical applications, Ch. 6 in: Mater. Biomed. Eng. Thermoset Thermoplast. Polym., Elsevier, 175-216 (2019). A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, Polyethylene and polypropylene matrix composites for biomedical applications, Ch. 6 in: Mater. Biomed. Eng. Thermoset Thermoplast. Polym., Elsevier, 175-216 (2019).
57.
go back to reference J. M. Kenny and L. Nicolais, Science and technology of polymer composites, Ch. 18, Supplement 1 in: Comprehensive Polymer Science and Supplements, Pergamon, 471-525 (1989). J. M. Kenny and L. Nicolais, Science and technology of polymer composites, Ch. 18, Supplement 1 in: Comprehensive Polymer Science and Supplements, Pergamon, 471-525 (1989).
58.
go back to reference M. Knight and D. Curliss, Composite materials, Ch. Materials in: Encycl. Phys. Sci. Technol., Academic Press, 455-468 (2003). M. Knight and D. Curliss, Composite materials, Ch. Materials in: Encycl. Phys. Sci. Technol., Academic Press, 455-468 (2003).
59.
go back to reference R. Teti, K. Jemielniak, G. O’ Donnell, and D. Dornfeld, “Advanced monitoring of machining operations,” CIRP Ann., 59, No. 2, 717-739 (2010). R. Teti, K. Jemielniak, G. O’ Donnell, and D. Dornfeld, “Advanced monitoring of machining operations,” CIRP Ann., 59, No. 2, 717-739 (2010).
60.
go back to reference A. Caggiano, “Machining of fibre reinforced plastic composite materials,” Materials (Basel)., 11, No. 3 (2018). A. Caggiano, “Machining of fibre reinforced plastic composite materials,” Materials (Basel)., 11, No. 3 (2018).
61.
go back to reference R. Komanduri, “Machining of fiber-reinforced composites,” Mach. Sci. Technol., 1, No. 1, 113-152 (1997).CrossRef R. Komanduri, “Machining of fiber-reinforced composites,” Mach. Sci. Technol., 1, No. 1, 113-152 (1997).CrossRef
62.
go back to reference W. König, C. Wulf, P. Grass, and H. Willerscheid, “Papers Machining of Fibre Reinforced Plastics,” Ann. CIRP, 34, No. 2, 537-548 (1985).CrossRef W. König, C. Wulf, P. Grass, and H. Willerscheid, “Papers Machining of Fibre Reinforced Plastics,” Ann. CIRP, 34, No. 2, 537-548 (1985).CrossRef
63.
go back to reference R. Kumar, A.K. Sahoo, P.C. Mishra, and R.K. Das, “An investigation to study the wear characteristics and comparative performance of cutting inserts during hard turning,” Int. J. Mach. Mach. Mater., 20, No. 4, 320-344 (2018). R. Kumar, A.K. Sahoo, P.C. Mishra, and R.K. Das, “An investigation to study the wear characteristics and comparative performance of cutting inserts during hard turning,” Int. J. Mach. Mach. Mater., 20, No. 4, 320-344 (2018).
64.
go back to reference E. Persson, I. Eriksson, and L. Zackrisson, “Effects of hole machining defects on strength and fatigue life of composite laminates,” Compos. Part A Appl. Sci. Manuf., 28, No. 2, 141-151 (1997).CrossRef E. Persson, I. Eriksson, and L. Zackrisson, “Effects of hole machining defects on strength and fatigue life of composite laminates,” Compos. Part A Appl. Sci. Manuf., 28, No. 2, 141-151 (1997).CrossRef
65.
go back to reference Z. Qi, K. Zhang, H. Cheng, and S. Liu, “Numerical simulation for delamination during drilling of CFRP/AL stacks,” Mater. Res. Innov., 19, No. sup6, S6-98-S6-101 (2015). Z. Qi, K. Zhang, H. Cheng, and S. Liu, “Numerical simulation for delamination during drilling of CFRP/AL stacks,” Mater. Res. Innov., 19, No. sup6, S6-98-S6-101 (2015).
66.
go back to reference A. Korlos, D. Tzetzis, G. Mansour, D. Sagris and C. David, “The delamination effect of drilling and electro-discharge machining on the tensile strength of woven composites as studied by X-ray computed tomography,” Int. J. Mach. Mach. Mater., 18, No. 4, 426-448 (2016). A. Korlos, D. Tzetzis, G. Mansour, D. Sagris and C. David, “The delamination effect of drilling and electro-discharge machining on the tensile strength of woven composites as studied by X-ray computed tomography,” Int. J. Mach. Mach. Mater., 18, No. 4, 426-448 (2016).
67.
go back to reference D. Ozkan, M.S. Gok, M. Oge, and A.C. Karaoglanli, “Milling behavior analysis of carbon fiber-reinforced polymer (CFRP) composites,” Mater. Today Proc., 11, No. 1, 526-533 (2019).CrossRef D. Ozkan, M.S. Gok, M. Oge, and A.C. Karaoglanli, “Milling behavior analysis of carbon fiber-reinforced polymer (CFRP) composites,” Mater. Today Proc., 11, No. 1, 526-533 (2019).CrossRef
68.
go back to reference T. Wang, L. Liu, Y. Cheng, G. He and M. Xu, “Investigations on the impact fracture of cemented carbide insert during heavy-duty cutting,” Int. J. Mach. Mach. Mater., 20, No. 1, 1-12 (2018). T. Wang, L. Liu, Y. Cheng, G. He and M. Xu, “Investigations on the impact fracture of cemented carbide insert during heavy-duty cutting,” Int. J. Mach. Mach. Mater., 20, No. 1, 1-12 (2018).
69.
go back to reference V. Lopresto, A. Caggiano, and R. Teti, “High performance cutting of fibre reinforced plastic composite materials,” Procedia CIRP, 46, 71-82 (2016).CrossRef V. Lopresto, A. Caggiano, and R. Teti, “High performance cutting of fibre reinforced plastic composite materials,” Procedia CIRP, 46, 71-82 (2016).CrossRef
70.
go back to reference E. Uhlmann, F. Sammler, S. Richarz, F. Heitmüller, and M. Bilz, “Machining of carbon fibre reinforced plastics,” Procedia CIRP, 24, 19-24 (2014).CrossRef E. Uhlmann, F. Sammler, S. Richarz, F. Heitmüller, and M. Bilz, “Machining of carbon fibre reinforced plastics,” Procedia CIRP, 24, 19-24 (2014).CrossRef
71.
go back to reference M. Altin Karataş and H. Gökkaya, “A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials,” Def. Technol., 14, No. 4, 318-326 (2018). M. Altin Karataş and H. Gökkaya, “A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials,” Def. Technol., 14, No. 4, 318-326 (2018).
72.
go back to reference D. I. Poór, N. Geier, C. Pereszlai, and J. Xu, “A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges,” Compos. Part B Eng., 223, p. 109155 (2021).CrossRef D. I. Poór, N. Geier, C. Pereszlai, and J. Xu, “A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges,” Compos. Part B Eng., 223, p. 109155 (2021).CrossRef
73.
go back to reference J. H. Lee, J. C. Ge, and J. H. Song, “Study on burr formation and tool wear in drilling CFRP and its hybrid composites,” Appl. Sci. 2021, 11, No. 1, p. 384 (2021). J. H. Lee, J. C. Ge, and J. H. Song, “Study on burr formation and tool wear in drilling CFRP and its hybrid composites,” Appl. Sci. 2021, 11, No. 1, p. 384 (2021).
74.
go back to reference K. Shunmugesh and K. Panneerselvam, “Machinability study of carbon fiber reinforced polymer in the longitudinal and transverse direction and optimization of process parameters using PSO-GSA,” Eng. Sci. Technol. an Int. J., 19, No. 3, 1552-1563 (2016).CrossRef K. Shunmugesh and K. Panneerselvam, “Machinability study of carbon fiber reinforced polymer in the longitudinal and transverse direction and optimization of process parameters using PSO-GSA,” Eng. Sci. Technol. an Int. J., 19, No. 3, 1552-1563 (2016).CrossRef
75.
go back to reference S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Review on machinability of fiber reinforced polymers: A drilling approach,” Silicon, 10, No. 5, 2295-2305 (2018).CrossRef S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Review on machinability of fiber reinforced polymers: A drilling approach,” Silicon, 10, No. 5, 2295-2305 (2018).CrossRef
76.
go back to reference A. Kumar, “Experimental investigations on machining of CFRP composites: study of parametric influence and machining performance optimization,” PhD thesis, National Institute of Technology, Rourkela (2015). A. Kumar, “Experimental investigations on machining of CFRP composites: study of parametric influence and machining performance optimization,” PhD thesis, National Institute of Technology, Rourkela (2015).
77.
go back to reference P. Patel, V. Chaudhary, K. Patel, and P. Gohil, “Milling of polymer matrix composites: A review,” Int. J. Appl. Eng. Res. 13, No. 10, 7455-7465 (2018). P. Patel, V. Chaudhary, K. Patel, and P. Gohil, “Milling of polymer matrix composites: A review,” Int. J. Appl. Eng. Res. 13, No. 10, 7455-7465 (2018).
78.
go back to reference A. A. Abdulmajeed, T. O. Närhi, P. K. Vallittu, and L. V. Lassila, “The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite,” Dent. Mater., 27, No. 4, 313-321 (2011).CrossRef A. A. Abdulmajeed, T. O. Närhi, P. K. Vallittu, and L. V. Lassila, “The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite,” Dent. Mater., 27, No. 4, 313-321 (2011).CrossRef
79.
go back to reference M. Y. Matveev, A. C. Long, L. P. Brown, and I. A. Jones, “Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite,” J. Compos. Mater., 51, No. 7, 913-925 (2017).CrossRef M. Y. Matveev, A. C. Long, L. P. Brown, and I. A. Jones, “Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite,” J. Compos. Mater., 51, No. 7, 913-925 (2017).CrossRef
80.
go back to reference M. Bulut, M. Alsaadi, and A. Erkliǧ, “A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles,” Mater. Res. Express, 5, No. 2, 025301(2018). M. Bulut, M. Alsaadi, and A. Erkliǧ, “A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles,” Mater. Res. Express, 5, No. 2, 025301(2018).
81.
go back to reference J. Abenojar, M. A. Martínez, F. Velasco, V. Pascual-Sánchez, and J. M. Martín-Martínez, “Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin,” J. Adhes., 85, No. 4-5, 216-238 (2009).CrossRef J. Abenojar, M. A. Martínez, F. Velasco, V. Pascual-Sánchez, and J. M. Martín-Martínez, “Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin,” J. Adhes., 85, No. 4-5, 216-238 (2009).CrossRef
82.
go back to reference N. Ramesha, Siddaramaiah, and S. Akhtar, “Effect of banyan tree saw dust powder content on the mechanical properties and machining parameters on the machining behaviour of polypropylene composites,” Int. J. Mach. Mach. Mater., 19, No. 2, 160-179 (2017). N. Ramesha, Siddaramaiah, and S. Akhtar, “Effect of banyan tree saw dust powder content on the mechanical properties and machining parameters on the machining behaviour of polypropylene composites,” Int. J. Mach. Mach. Mater., 19, No. 2, 160-179 (2017).
83.
go back to reference B. G. Mewada and H. K. Raval, “Prediction model development for material removal rate in band sawing using dimensional analysis approach,” Int. J. Mach. Mach. Mater., 20, No. 2, 165-179 (2018). B. G. Mewada and H. K. Raval, “Prediction model development for material removal rate in band sawing using dimensional analysis approach,” Int. J. Mach. Mach. Mater., 20, No. 2, 165-179 (2018).
84.
go back to reference R. K. Thakur and K. K. Singh, “Influence of fillers on polymeric composite during conventional machining processes: a review,” J. Brazilian Soc. Mech. Sci. Eng., 43, No. 2, 1-20 (2021).CrossRef R. K. Thakur and K. K. Singh, “Influence of fillers on polymeric composite during conventional machining processes: a review,” J. Brazilian Soc. Mech. Sci. Eng., 43, No. 2, 1-20 (2021).CrossRef
85.
go back to reference H. Y. Puw and H. Hocheng, “Machinability test of carbon fiber-reinforced plastics in milling,” Mater. Manuf. Process., 8, No. 6, 717-729 (1993).CrossRef H. Y. Puw and H. Hocheng, “Machinability test of carbon fiber-reinforced plastics in milling,” Mater. Manuf. Process., 8, No. 6, 717-729 (1993).CrossRef
86.
go back to reference M. P. Jenarthanan and R. Jeyapaul, “Machinability study of carbon fibre reinforced polymer (CFRP) composites using design of experiment technique,” Pigment Resin Technol., 43, No. 1, 35-44 (2014).CrossRef M. P. Jenarthanan and R. Jeyapaul, “Machinability study of carbon fibre reinforced polymer (CFRP) composites using design of experiment technique,” Pigment Resin Technol., 43, No. 1, 35-44 (2014).CrossRef
87.
go back to reference J. W. Ma, N. Zhang, S. Chen, W. W. Su, and G. Q. Hu, “Deformation analysing for thin-walled parts based on analysis of single-tooth or multi-tooth milling,” Int. J. Mach. Mach. Mater., 20, No. 6, 575-593 (2018). J. W. Ma, N. Zhang, S. Chen, W. W. Su, and G. Q. Hu, “Deformation analysing for thin-walled parts based on analysis of single-tooth or multi-tooth milling,” Int. J. Mach. Mach. Mater., 20, No. 6, 575-593 (2018).
88.
go back to reference S. Huang, Y. Liu, K. Jiao, and J. Li, “Three-dimensional finite element simulation analysis of milling deformation of SiCp/Al composites thin-walled parts,” Int. J. Mach. Mach. Mater., 19, No. 5, 408-425 (2017). S. Huang, Y. Liu, K. Jiao, and J. Li, “Three-dimensional finite element simulation analysis of milling deformation of SiCp/Al composites thin-walled parts,” Int. J. Mach. Mach. Mater., 19, No. 5, 408-425 (2017).
89.
go back to reference A. M. Abrão, J. C. C. Rubio, P. E. Faria, and J. P. Davim, “The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite,” Mater. Des., 29, No. 2, 508-513 (2008).CrossRef A. M. Abrão, J. C. C. Rubio, P. E. Faria, and J. P. Davim, “The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite,” Mater. Des., 29, No. 2, 508-513 (2008).CrossRef
90.
go back to reference H. Wang, J. Sun, J. Li, L. Lu, and N. Li, “Evaluation of cutting force and cutting temperature in milling carbon fiberreinforced polymer composites,” Int. J. Adv. Manuf. Technol., 82, No. 9-12, 1517-1525 (2016).CrossRef H. Wang, J. Sun, J. Li, L. Lu, and N. Li, “Evaluation of cutting force and cutting temperature in milling carbon fiberreinforced polymer composites,” Int. J. Adv. Manuf. Technol., 82, No. 9-12, 1517-1525 (2016).CrossRef
91.
go back to reference L. Sorrentino and S. Turchetta, “Milling of carbon fiber-reinforced plastics : analysis of cutting forces and surface roughness,” in 18th International Conference on Composite Materials, 1-6 (2011). L. Sorrentino and S. Turchetta, “Milling of carbon fiber-reinforced plastics : analysis of cutting forces and surface roughness,” in 18th International Conference on Composite Materials, 1-6 (2011).
92.
go back to reference J. P. Davim and P. Reis, “Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments,” J. Mater. Process. Technol., 160, No. 2, 160-167 (2005).CrossRef J. P. Davim and P. Reis, “Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments,” J. Mater. Process. Technol., 160, No. 2, 160-167 (2005).CrossRef
93.
go back to reference M. Adam Khan and A. Senthil Kumar, “Machinability of glass fibre reinforced plastic (GFRP) composite using aluminabased ceramic cutting tools,” J. Manuf. Process., 13, No. 1, 67-73 (2011). M. Adam Khan and A. Senthil Kumar, “Machinability of glass fibre reinforced plastic (GFRP) composite using aluminabased ceramic cutting tools,” J. Manuf. Process., 13, No. 1, 67-73 (2011).
94.
go back to reference S. Q. Liu, Y. Chen, Y. C. Fu, and A. D. Hu, “Study on the cutting force and machined surface quality of milling AFRP,” Mater. Sci. Forum, 836-837, 155-160 (2016).CrossRef S. Q. Liu, Y. Chen, Y. C. Fu, and A. D. Hu, “Study on the cutting force and machined surface quality of milling AFRP,” Mater. Sci. Forum, 836-837, 155-160 (2016).CrossRef
95.
go back to reference N. Geier, J. P. Davim, and T. Szalay, “Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review,” Compos. Part A, 125, p. 105552 (2019).CrossRef N. Geier, J. P. Davim, and T. Szalay, “Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review,” Compos. Part A, 125, p. 105552 (2019).CrossRef
96.
go back to reference S. Altaf Hussain, V. Pandurangadu, and K. Palani Kumar, “Machinability of glass fiber reinforced plastic (GFRP) composite materials,” Int. J. Eng. Sci. Technol., 3, No. 4, 103-118 (2011). S. Altaf Hussain, V. Pandurangadu, and K. Palani Kumar, “Machinability of glass fiber reinforced plastic (GFRP) composite materials,” Int. J. Eng. Sci. Technol., 3, No. 4, 103-118 (2011).
97.
go back to reference F. J. Wang, J. W. Yin, J. W. Ma, Z. Y. Jia, F. Yang, and B. Niu, “Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates,” Int. J. Adv. Manuf. Technol., 91, No. 9-12, 3107-3120 (2017).CrossRef F. J. Wang, J. W. Yin, J. W. Ma, Z. Y. Jia, F. Yang, and B. Niu, “Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates,” Int. J. Adv. Manuf. Technol., 91, No. 9-12, 3107-3120 (2017).CrossRef
98.
go back to reference Z. Jia, R. Fu, F. Wang, B. Qian, and C. He, “Temperature effects in end milling carbon fiber reinforced polymer composites,” Polym. Compos., 39, No. 2, 437-447 (2018).CrossRef Z. Jia, R. Fu, F. Wang, B. Qian, and C. He, “Temperature effects in end milling carbon fiber reinforced polymer composites,” Polym. Compos., 39, No. 2, 437-447 (2018).CrossRef
99.
go back to reference M. K. Nor Khairusshima, C. H. Che Hassan, A. G. Jaharah, A. K. M. Amin, and A. N. Md Idriss, “Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic,” Wear, 302, No. 1-2, 1113-1123 (2013). M. K. Nor Khairusshima, C. H. Che Hassan, A. G. Jaharah, A. K. M. Amin, and A. N. Md Idriss, “Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic,” Wear, 302, No. 1-2, 1113-1123 (2013).
100.
go back to reference A. I. Azmi, “Chip formation studies in machining fibre reinforced polymer composites,” Int. J. Mater. Prod. Technol., 46, No. 1, 32-46 (2013).CrossRef A. I. Azmi, “Chip formation studies in machining fibre reinforced polymer composites,” Int. J. Mater. Prod. Technol., 46, No. 1, 32-46 (2013).CrossRef
101.
go back to reference H. Hocheng, H. Y. Puw, and Y. Huang, “Preliminary study on milling of unidirectional carbon fibre-reinforced plastics,” Compos. Manuf., 4, No. 2, 103-108 (1993).CrossRef H. Hocheng, H. Y. Puw, and Y. Huang, “Preliminary study on milling of unidirectional carbon fibre-reinforced plastics,” Compos. Manuf., 4, No. 2, 103-108 (1993).CrossRef
102.
go back to reference F. Wang and Y. Wang, “Research on milling hole of AFRP based on cryogenic cooling processing,” Int. J. Adv. Manuf. Technol., 106, No. 11-12, 5277-5287 (2020).CrossRef F. Wang and Y. Wang, “Research on milling hole of AFRP based on cryogenic cooling processing,” Int. J. Adv. Manuf. Technol., 106, No. 11-12, 5277-5287 (2020).CrossRef
103.
go back to reference I. S. N. V. R. Prasanth, D. V. Ravishankar, and M. M. Hussain, “Machinability characterization in milling of GFRP composites by Taguchi’s technique,” J Chem Pharm Sci, 10, No. 2, 1034-1040 (2017). I. S. N. V. R. Prasanth, D. V. Ravishankar, and M. M. Hussain, “Machinability characterization in milling of GFRP composites by Taguchi’s technique,” J Chem Pharm Sci, 10, No. 2, 1034-1040 (2017).
104.
go back to reference N. Geier, “Influence of fibre orientation on cutting force in up and down milling of UD-CFRP composites,” Int. J. Adv. Manuf. Technol., 111, No. 3-4, 881-893 (2020).CrossRef N. Geier, “Influence of fibre orientation on cutting force in up and down milling of UD-CFRP composites,” Int. J. Adv. Manuf. Technol., 111, No. 3-4, 881-893 (2020).CrossRef
105.
go back to reference R. Voss, L. Seeholzer, F. Kuster, and K. Wegener, “Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP,” CIRP J. Manuf. Sci. Technol., 18, 75-91 (2017).CrossRef R. Voss, L. Seeholzer, F. Kuster, and K. Wegener, “Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP,” CIRP J. Manuf. Sci. Technol., 18, 75-91 (2017).CrossRef
106.
go back to reference H. Li, X. Qin, G. He, Y. Jin, D. Sun, and M. Price, “Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP,” Int. J. Adv. Manuf. Technol., 82, No. 5-8, 1079-1088 (2016).CrossRef H. Li, X. Qin, G. He, Y. Jin, D. Sun, and M. Price, “Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP,” Int. J. Adv. Manuf. Technol., 82, No. 5-8, 1079-1088 (2016).CrossRef
107.
go back to reference H. Wang, X. Zhang, and Y. Duan, “Effects of drilling area temperature on drilling of carbon fiber reinforced polymer composites due to temperature-dependent properties,” Int. J. Adv. Manuf. Technol., 96, No. 5-8, 2943-2951 (2018).CrossRef H. Wang, X. Zhang, and Y. Duan, “Effects of drilling area temperature on drilling of carbon fiber reinforced polymer composites due to temperature-dependent properties,” Int. J. Adv. Manuf. Technol., 96, No. 5-8, 2943-2951 (2018).CrossRef
108.
go back to reference J. Campos Rubio, A. M. Abrao, P. E. Faria, A. E. Correia, and J. P. Davim, “Effects of high speed in the drilling of glass fibre reinforced plastic: Evaluation of the delamination factor,” Int. J. Mach. Tools Manuf., 48, No. 6, 715-720 (2008). J. Campos Rubio, A. M. Abrao, P. E. Faria, A. E. Correia, and J. P. Davim, “Effects of high speed in the drilling of glass fibre reinforced plastic: Evaluation of the delamination factor,” Int. J. Mach. Tools Manuf., 48, No. 6, 715-720 (2008).
109.
go back to reference E. D. Eneyew and M. Ramulu, “Experimental study of surface quality and damage when drilling unidirectional CFRP composites,” J. Mater. Res. Technol., 3, No. 4, 354-362 (2014).CrossRef E. D. Eneyew and M. Ramulu, “Experimental study of surface quality and damage when drilling unidirectional CFRP composites,” J. Mater. Res. Technol., 3, No. 4, 354-362 (2014).CrossRef
110.
go back to reference R. Nagaraja, T. Rangaswamy, and K. R. Channakeshava, “Machining of Kevlar Aramid Fiber-Reinforced Plastics (K-1226) Using Solid Carbide Step Drill K44,” Ch. in: Structure Integrity Assessment — Springer, 221-229 (2020). R. Nagaraja, T. Rangaswamy, and K. R. Channakeshava, “Machining of Kevlar Aramid Fiber-Reinforced Plastics (K-1226) Using Solid Carbide Step Drill K44,” Ch. in: Structure Integrity Assessment — Springer, 221-229 (2020).
111.
go back to reference N. Feito, A. Muñoz-Sánchez, A. Díaz-álvarez, and J. A. Loya, “Analysis of the machinability of carbon fiber composite materials in function of tool wear and cutting parameters using the artificial neural network approach,” Materials, 12, No. 17, 2747 (2019). N. Feito, A. Muñoz-Sánchez, A. Díaz-álvarez, and J. A. Loya, “Analysis of the machinability of carbon fiber composite materials in function of tool wear and cutting parameters using the artificial neural network approach,” Materials, 12, No. 17, 2747 (2019).
112.
go back to reference M. S. Won and C. K. H. Dharan, “Drilling of aramid and carbon fiber polymer composites,” J. Manuf. Sci. Eng. Trans. ASME, 124, No. 4, 778-783 (2002).CrossRef M. S. Won and C. K. H. Dharan, “Drilling of aramid and carbon fiber polymer composites,” J. Manuf. Sci. Eng. Trans. ASME, 124, No. 4, 778-783 (2002).CrossRef
113.
go back to reference L. Zheng, H. Zhou, C. Gao, and J. Yuan, “Hole drilling in ceramics/Kevlar fiber reinforced plastics double-plate composite armor using diamond core drill,” Mater. Des., 40, 461-466 (2012).CrossRef L. Zheng, H. Zhou, C. Gao, and J. Yuan, “Hole drilling in ceramics/Kevlar fiber reinforced plastics double-plate composite armor using diamond core drill,” Mater. Des., 40, 461-466 (2012).CrossRef
114.
go back to reference K. P. Aveen, N. V. Londe, G. G. Amin, and I. Salim Shaikh, “A review on the effects of input parameters & filler composition on delamination during machining of FRP composites,” Mater. Today Proc., 46, 2607-2611 (2021). K. P. Aveen, N. V. Londe, G. G. Amin, and I. Salim Shaikh, “A review on the effects of input parameters & filler composition on delamination during machining of FRP composites,” Mater. Today Proc., 46, 2607-2611 (2021).
115.
go back to reference N. Geier, G. Póka, and C. Pereszlai, “Monitoring of orbital drilling process in CFRP based on digital image processing of characteristics of uncut fibres,” Procedia CIRP, 85, No. 2, 162-167 (2020). N. Geier, G. Póka, and C. Pereszlai, “Monitoring of orbital drilling process in CFRP based on digital image processing of characteristics of uncut fibres,” Procedia CIRP, 85, No. 2, 162-167 (2020).
116.
go back to reference K. Phapale, R. Singh, and R. K. P. Singh, “Comparative assessment of delamination control techniques in conventional drilling of CFRP,” Procedia Manuf., 48, No. 2019, 123-130 (2020).CrossRef K. Phapale, R. Singh, and R. K. P. Singh, “Comparative assessment of delamination control techniques in conventional drilling of CFRP,” Procedia Manuf., 48, No. 2019, 123-130 (2020).CrossRef
117.
go back to reference N. Geier, T. Szalay, and M. Takács, “Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fibre-reinforced plastic (UD-CFRP) composite laminates,” Int. J. Adv. Manuf. Technol., 100, No. 9-12, 3139-3154 (2019).CrossRef N. Geier, T. Szalay, and M. Takács, “Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fibre-reinforced plastic (UD-CFRP) composite laminates,” Int. J. Adv. Manuf. Technol., 100, No. 9-12, 3139-3154 (2019).CrossRef
118.
go back to reference M. Mudhukrishnan, P. Hariharan, K. Palanikumar, and B. Latha, “Tool materials influence on surface roughness and oversize in machining glass fiber reinforced polypropylene (GFR-PP) composites,” Mater. Manuf. Process., 32, No. 9, 988-997 (2017).CrossRef M. Mudhukrishnan, P. Hariharan, K. Palanikumar, and B. Latha, “Tool materials influence on surface roughness and oversize in machining glass fiber reinforced polypropylene (GFR-PP) composites,” Mater. Manuf. Process., 32, No. 9, 988-997 (2017).CrossRef
119.
go back to reference M. Harris, M. A. M. Qureshi, M. Q. Saleem, S. A. Khan, and M. M. A. Bhutta, “Carbon fiber-reinforced polymer composite drilling via aluminum chromium nitride-coated tools: Hole quality and tool wear assessment,” J. Reinf. Plast. Compos., 36, No. 19, 1403-1420 (2017).CrossRef M. Harris, M. A. M. Qureshi, M. Q. Saleem, S. A. Khan, and M. M. A. Bhutta, “Carbon fiber-reinforced polymer composite drilling via aluminum chromium nitride-coated tools: Hole quality and tool wear assessment,” J. Reinf. Plast. Compos., 36, No. 19, 1403-1420 (2017).CrossRef
120.
go back to reference S. Gaugel et al., “A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP),” Compos. Struct., 155, 173-183 (2016).CrossRef S. Gaugel et al., “A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP),” Compos. Struct., 155, 173-183 (2016).CrossRef
121.
go back to reference T. J. Grilo, R. M. F. Paulo, C. R. M. Silva, and J. P. Davim, “Experimental delamination analyses of CFRPs using different drill geometries,” Compos. Part B, 45, No. 1, 1344-1350 (2013).CrossRef T. J. Grilo, R. M. F. Paulo, C. R. M. Silva, and J. P. Davim, “Experimental delamination analyses of CFRPs using different drill geometries,” Compos. Part B, 45, No. 1, 1344-1350 (2013).CrossRef
122.
go back to reference I. S. Shyha, D. K. Aspinwall, S. L. Soo, and S. Bradley, “Drill geometry and operating effects when cutting small diameter holes in CFRP,” Int. J. Mach. Tools Manuf., 49, No. 12-13, 1008-1014 (2009).CrossRef I. S. Shyha, D. K. Aspinwall, S. L. Soo, and S. Bradley, “Drill geometry and operating effects when cutting small diameter holes in CFRP,” Int. J. Mach. Tools Manuf., 49, No. 12-13, 1008-1014 (2009).CrossRef
123.
go back to reference D. S. Raj and L. Karunamoorthy, “A new and comprehensive characterisation of tool wear in CFRP drilling using micro-geometry and topography studies on the cutting edge,” J. Manuf. Process., 32, 839-856 (2018).CrossRef D. S. Raj and L. Karunamoorthy, “A new and comprehensive characterisation of tool wear in CFRP drilling using micro-geometry and topography studies on the cutting edge,” J. Manuf. Process., 32, 839-856 (2018).CrossRef
124.
go back to reference C. Pereszlai and N. Geier, “Comparative analysis of wobble milling, helical milling and conventional drilling of CFRPs,” Int. J. Adv. Manuf. Technol., 106, No. 9-10, 3913-3930 (2020).CrossRef C. Pereszlai and N. Geier, “Comparative analysis of wobble milling, helical milling and conventional drilling of CFRPs,” Int. J. Adv. Manuf. Technol., 106, No. 9-10, 3913-3930 (2020).CrossRef
125.
go back to reference X. Wang, P. Y. Kwon, C. Sturtevant, D. D. W. Kim, and J. Lantrip, “Tool wear of coated drills in drilling CFRP,” J. Manuf. Process., 15, No. 1, 127-135 (2013).CrossRef X. Wang, P. Y. Kwon, C. Sturtevant, D. D. W. Kim, and J. Lantrip, “Tool wear of coated drills in drilling CFRP,” J. Manuf. Process., 15, No. 1, 127-135 (2013).CrossRef
126.
go back to reference C. Pereszlai, N. Geier, D. I. Poór, B. Z. Balázs, and G. Póka, “Drilling fibre reinforced polymer composites (CFRP and GFRP): An analysis of the cutting force of the tilted helical milling process,” Compos. Struct., 262, p. 113646 (2021).CrossRef C. Pereszlai, N. Geier, D. I. Poór, B. Z. Balázs, and G. Póka, “Drilling fibre reinforced polymer composites (CFRP and GFRP): An analysis of the cutting force of the tilted helical milling process,” Compos. Struct., 262, p. 113646 (2021).CrossRef
127.
go back to reference J. Xu, T. Lin, J. P. Davim, M. Chen, and M. E. Mansori, “Wear behavior of special tools in the drilling of CFRP composite laminates,” Wear, 476, p. 203738 (2021).CrossRef J. Xu, T. Lin, J. P. Davim, M. Chen, and M. E. Mansori, “Wear behavior of special tools in the drilling of CFRP composite laminates,” Wear, 476, p. 203738 (2021).CrossRef
128.
go back to reference N. Geier and T. Szalay, “Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP),” Measurement., 110, 319-334 (2017).CrossRef N. Geier and T. Szalay, “Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP),” Measurement., 110, 319-334 (2017).CrossRef
129.
go back to reference N. Geier and C. Pereszlai, “Analysis of characteristics of surface roughness of machined CFRP composites,” Period. Polytech. Mech. Eng., 64, No. 1, 67-80 (2020).CrossRef N. Geier and C. Pereszlai, “Analysis of characteristics of surface roughness of machined CFRP composites,” Period. Polytech. Mech. Eng., 64, No. 1, 67-80 (2020).CrossRef
130.
go back to reference H. Wang, X. Zhang, and Y. Duan, “Investigating the effect of low-temperature drilling process on the mechanical behavior of CFRP,” Polymers (Basel)., 14, No. 5, p. 1034 (2022). H. Wang, X. Zhang, and Y. Duan, “Investigating the effect of low-temperature drilling process on the mechanical behavior of CFRP,” Polymers (Basel)., 14, No. 5, p. 1034 (2022).
131.
go back to reference U. A. Khashaba et al., “Heat-affected zone and mechanical analysis of gfrp composites with different thicknesses in drilling processes,” Polymers (Basel)., 13, No. 14 (2021). U. A. Khashaba et al., “Heat-affected zone and mechanical analysis of gfrp composites with different thicknesses in drilling processes,” Polymers (Basel)., 13, No. 14 (2021).
132.
go back to reference U. A. Khashaba, M. S. Abd-Elwahed, M. A. Eltaher, I. Najjar, A. Melaibari, and K. I. Ahmed, “Thermo-mechanical and delamination properties in drilling GFRP composites by various drill angles,” Polym., 13, No. 11, p. 1884 (2021). U. A. Khashaba, M. S. Abd-Elwahed, M. A. Eltaher, I. Najjar, A. Melaibari, and K. I. Ahmed, “Thermo-mechanical and delamination properties in drilling GFRP composites by various drill angles,” Polym., 13, No. 11, p. 1884 (2021).
133.
go back to reference M. Mudegowdar, “Influence of cutting parameters during drilling of filled glass fabric-reinforced epoxy composites,” Sci. Eng. Compos. Mater., 22, No. 1, 81-88 (2015).CrossRef M. Mudegowdar, “Influence of cutting parameters during drilling of filled glass fabric-reinforced epoxy composites,” Sci. Eng. Compos. Mater., 22, No. 1, 81-88 (2015).CrossRef
134.
go back to reference A. T. Erturk, F. Vatansever, E. Yarar, E. A. Guven, and T. Sinmazcelik, “Effects of cutting temperature and process optimization in drilling of GFRP composites,” J. Compos. Mater., 55, No. 2, 235-249 (2021).CrossRef A. T. Erturk, F. Vatansever, E. Yarar, E. A. Guven, and T. Sinmazcelik, “Effects of cutting temperature and process optimization in drilling of GFRP composites,” J. Compos. Mater., 55, No. 2, 235-249 (2021).CrossRef
135.
go back to reference T. V. Rajamurugan, K. Shanmugam, and K. Palanikumar, “Analysis of delamination in drilling glass fiber reinforced polyester composites,” Mater. Des., 45, 80-87 (2013).CrossRef T. V. Rajamurugan, K. Shanmugam, and K. Palanikumar, “Analysis of delamination in drilling glass fiber reinforced polyester composites,” Mater. Des., 45, 80-87 (2013).CrossRef
136.
go back to reference D. Abdull budan, S. Basavarajappa, M. Prasannaa Kumar, and A. G. Joshi, “Influence of fibre volume reinforcement in drilling GFRP laminates,” J. Eng. Sci. Technol., 66, No. 6, 733-744 (2011). D. Abdull budan, S. Basavarajappa, M. Prasannaa Kumar, and A. G. Joshi, “Influence of fibre volume reinforcement in drilling GFRP laminates,” J. Eng. Sci. Technol., 66, No. 6, 733-744 (2011).
137.
go back to reference N. Geier, J. Xu, C. Pereszlai, D. I. Poór, and J. P. Davim, “Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations,” Procedia Manuf., 54, 284-289 (2021).CrossRef N. Geier, J. Xu, C. Pereszlai, D. I. Poór, and J. P. Davim, “Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations,” Procedia Manuf., 54, 284-289 (2021).CrossRef
138.
go back to reference D. Rathod, M. Rathod, R. Patel, S. M. Shahabaz, S. D. Shetty, and N. Shetty, “A review on strengthening, delamination formation and suppression techniques during drilling of CFRP composites,” Cogent Eng., 8, No. 1 (2021). D. Rathod, M. Rathod, R. Patel, S. M. Shahabaz, S. D. Shetty, and N. Shetty, “A review on strengthening, delamination formation and suppression techniques during drilling of CFRP composites,” Cogent Eng., 8, No. 1 (2021).
139.
go back to reference B. Kavad, A. Pandey, M. Tadavi, and H. Jakharia, “A review paper on effects of drilling on glass fiber reinforced plastic,” Procedia Technol., 14, 457-464 (2014).CrossRef B. Kavad, A. Pandey, M. Tadavi, and H. Jakharia, “A review paper on effects of drilling on glass fiber reinforced plastic,” Procedia Technol., 14, 457-464 (2014).CrossRef
140.
go back to reference K. S. Lokesh, T. Pinto, and C. G. Ramchandra, “Effect of tool wear & machinability studies on polymer composites: a review,” Int. J. Eng. Inf. Syst., 1, No. 5, 71-77 (2017). K. S. Lokesh, T. Pinto, and C. G. Ramchandra, “Effect of tool wear & machinability studies on polymer composites: a review,” Int. J. Eng. Inf. Syst., 1, No. 5, 71-77 (2017).
141.
go back to reference U. Spur, G. Lachmund, Turning of fibre-reinforced plastics, in Machining of Ceramics and Composites, CRC Press: Boca Raton, FL, USA, 209-248 (1999). U. Spur, G. Lachmund, Turning of fibre-reinforced plastics, in Machining of Ceramics and Composites, CRC Press: Boca Raton, FL, USA, 209-248 (1999).
142.
go back to reference K. S. Kim, D. G. Lee, Y. K. Kwak, and S. Namgung, “Machinability of carbon fiber-epoxy composite materials in turning,” J. Mater. Process. Tech., 32, No. 3, 553-570 (1992).CrossRef K. S. Kim, D. G. Lee, Y. K. Kwak, and S. Namgung, “Machinability of carbon fiber-epoxy composite materials in turning,” J. Mater. Process. Tech., 32, No. 3, 553-570 (1992).CrossRef
143.
go back to reference T. Rajasekaran, K. Palanikumar, and B. K. Vinayagam, “Turning CFRP composites with ceramic tool for surface roughness analysis,” Procedia Eng., 38, 2922-2929 (2012).CrossRef T. Rajasekaran, K. Palanikumar, and B. K. Vinayagam, “Turning CFRP composites with ceramic tool for surface roughness analysis,” Procedia Eng., 38, 2922-2929 (2012).CrossRef
144.
go back to reference K. Palanikumar, F. Mata, and J. P. Davim, “Analysis of surface roughness parameters in turning of FRP tubes by PCD tool,” J. Mater. Process. Technol., 204, No. 1-3, 469-474 (2008).CrossRef K. Palanikumar, F. Mata, and J. P. Davim, “Analysis of surface roughness parameters in turning of FRP tubes by PCD tool,” J. Mater. Process. Technol., 204, No. 1-3, 469-474 (2008).CrossRef
145.
go back to reference J. P. Davim and F. Mata, “Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools,” Int. J. Adv. Manuf. Technol., 26, No. 4, 319-323 (2005).CrossRef J. P. Davim and F. Mata, “Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools,” Int. J. Adv. Manuf. Technol., 26, No. 4, 319-323 (2005).CrossRef
146.
go back to reference R. K. Verma, S. Datta, and P. K. Pal, “Machining of unidirectional glass fibre reinforced polymers (UD-GFRP) composites,” Int. J. Mech. Eng. Rob. Res., 4, No. 2, p. 49 (2015). R. K. Verma, S. Datta, and P. K. Pal, “Machining of unidirectional glass fibre reinforced polymers (UD-GFRP) composites,” Int. J. Mech. Eng. Rob. Res., 4, No. 2, p. 49 (2015).
147.
go back to reference S. Kumar, M. Gupta, P. S. Satsangi, and H. K. Sardana, “Cutting forces optimization in the turning of UD-GFRP composites under different cutting environment with polycrystalline diamond tool,” Int. J. Eng. Sci. Technol., 4, No. 2, 106-121 (2018).CrossRef S. Kumar, M. Gupta, P. S. Satsangi, and H. K. Sardana, “Cutting forces optimization in the turning of UD-GFRP composites under different cutting environment with polycrystalline diamond tool,” Int. J. Eng. Sci. Technol., 4, No. 2, 106-121 (2018).CrossRef
148.
go back to reference B. Işik, “Experimental investigations of surface roughness in orthogonal turning of unidirectional glass-fiber reinforced plastic composites,” Int. J. Adv. Manuf. Technol., 37, No. 1-2, 42-48 (2008).CrossRef B. Işik, “Experimental investigations of surface roughness in orthogonal turning of unidirectional glass-fiber reinforced plastic composites,” Int. J. Adv. Manuf. Technol., 37, No. 1-2, 42-48 (2008).CrossRef
149.
go back to reference G. Caprino, I. De Lorio, L. Nele, and L. Santo, “Effect of tool wear on cutting forces in the orthogonal cutting of unidirectional glass fibre-reinforced plastics,” Compos. Part A, 27, No. 5, 409-415 (1996).CrossRef G. Caprino, I. De Lorio, L. Nele, and L. Santo, “Effect of tool wear on cutting forces in the orthogonal cutting of unidirectional glass fibre-reinforced plastics,” Compos. Part A, 27, No. 5, 409-415 (1996).CrossRef
150.
go back to reference S. Kumar, Meenu, P. S. Satsangi, and H. K. Sardana, “Optimization of surface roughness in turning unidirectional glass fiber reinforced plastics (UD-GFRP) composites using polycrystalline diamond (PCD) cutting tool,” Indian J. Eng. Mater. Sci., 19, No. 3, 163-174 (2012). S. Kumar, Meenu, P. S. Satsangi, and H. K. Sardana, “Optimization of surface roughness in turning unidirectional glass fiber reinforced plastics (UD-GFRP) composites using polycrystalline diamond (PCD) cutting tool,” Indian J. Eng. Mater. Sci., 19, No. 3, 163-174 (2012).
151.
go back to reference H. Usuki, N. Narutaka, and Y. Yamane, “A study of the cutting performance of diamond coated tools-tool wear of diamond coated tools in machining of CFRP,” Int. J. Japan Soc. Precis. Eng., 25, 35-36 (1991). H. Usuki, N. Narutaka, and Y. Yamane, “A study of the cutting performance of diamond coated tools-tool wear of diamond coated tools in machining of CFRP,” Int. J. Japan Soc. Precis. Eng., 25, 35-36 (1991).
152.
go back to reference M. S. Hossain and N. R. Dhar, “Machinability study of a Kevlar and glass reinforced polyester composite under dry and compressed air-cooling condition,” J. Mech. Eng., 49, No. 1, 18-26 (2019). M. S. Hossain and N. R. Dhar, “Machinability study of a Kevlar and glass reinforced polyester composite under dry and compressed air-cooling condition,” J. Mech. Eng., 49, No. 1, 18-26 (2019).
153.
go back to reference C. S. Chang, J. E. Ho, C. H. Chan, and B. C. Hwang, “Prediction of cutting temperatures in turning Carbon Fiber Reinforced Plastics composites with worn tools,” J. Appl. Sci., 11, No. 22, 3698-3707 (2011).CrossRef C. S. Chang, J. E. Ho, C. H. Chan, and B. C. Hwang, “Prediction of cutting temperatures in turning Carbon Fiber Reinforced Plastics composites with worn tools,” J. Appl. Sci., 11, No. 22, 3698-3707 (2011).CrossRef
154.
go back to reference D. Srinivasan, R. Balasundaram, and G. Rajkumar, “Investigation on turning parameters on machining time and vibration of carbon fibre reinforced laminates,” Int. J. Manuf. Technol. Manag., 34, No. 1, 78-96 (2020).CrossRef D. Srinivasan, R. Balasundaram, and G. Rajkumar, “Investigation on turning parameters on machining time and vibration of carbon fibre reinforced laminates,” Int. J. Manuf. Technol. Manag., 34, No. 1, 78-96 (2020).CrossRef
Metadata
Title
Machinability of High-Strength Fiber-Reinforced Polymer Textile Composites: A Review
Authors
H. S. Mali
P. Sharma
Publication date
14-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10078-x

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners