Skip to main content
Top
Published in:

2023 | OriginalPaper | Chapter

Machine-Generated Questions Attract Instructors When Acquainted with Learning Objectives

Authors : Machi Shimmei, Norman Bier, Noboru Matsuda

Published in: Artificial Intelligence in Education

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Answering questions is an essential learning activity on online courseware. It has been shown that merely answering questions facilitates learning. However, generating pedagogically effective questions is challenging. Although there have been studies on automated question generation, the primary research concern thus far is about if and how those question generation techniques can generate answerable questions and their anticipated effectiveness. We propose Quadl, a pragmatic method for generating questions that are aligned with specific learning objectives. We applied Quadl to an existing online course and conducted an evaluation study with in-service instructors. The results showed that questions generated by Quadl were evaluated as on-par with human-generated questions in terms of their relevance to the learning objectives. The instructors also expressed that they would be equally likely to adapt Quadl-generated questions to their course as they would human-generated questions. The results further showed that Quadl-generated questions were better than those generated by a state-of-the-art question generation model that generates questions without taking learning objectives into account.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Open learning Initiative (https://​oli.​cmu.​edu).
 
2
The code and data used for the current study is available at https://​github.​com/​IEClab-NCSU/​QUADL.
 
Literature
1.
go back to reference Rivers, M.L.: Metacognition about practice testing: a review of learners’ beliefs, monitoring, and control of test-enhanced learning. Educ. Psychol. Rev. 33(3), 823–862 (2021)CrossRef Rivers, M.L.: Metacognition about practice testing: a review of learners’ beliefs, monitoring, and control of test-enhanced learning. Educ. Psychol. Rev. 33(3), 823–862 (2021)CrossRef
2.
go back to reference Pan, S.C., Rickard, T.C.: Transfer of test-enhanced learning: meta-analytic review and synthesis. Psychol. Bull. 144(7), 710 (2018)CrossRef Pan, S.C., Rickard, T.C.: Transfer of test-enhanced learning: meta-analytic review and synthesis. Psychol. Bull. 144(7), 710 (2018)CrossRef
3.
go back to reference Smith, M.A., Karpicke, J.D.: Retrieval practice with short-answer, multiple-choice, and hybrid tests. Memory 22(7), 784–802 (2014)CrossRef Smith, M.A., Karpicke, J.D.: Retrieval practice with short-answer, multiple-choice, and hybrid tests. Memory 22(7), 784–802 (2014)CrossRef
5.
go back to reference Roediger, H.L., Karpicke, J.D.: The power of testing memory: basic research and implications for educational practice. Perspect. Psychol. Sci. 1(3), 181–210 (2006)CrossRef Roediger, H.L., Karpicke, J.D.: The power of testing memory: basic research and implications for educational practice. Perspect. Psychol. Sci. 1(3), 181–210 (2006)CrossRef
6.
go back to reference Lee, D.B., et al.: Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs. Association for Computational Linguistics (2020) Lee, D.B., et al.: Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs. Association for Computational Linguistics (2020)
7.
go back to reference Matsuda, N., et al.: PASTEL: Evidence-based learning engineering methods to facilitate creation of adaptive online courseware. In: Ouyang, F., et al. (eds.) Artificial Intelligence in STEM Education: The Paradigmatic Shifts in Research, Education, and Technology, pp. 1–16. CSC Press, New York, NY (in press) Matsuda, N., et al.: PASTEL: Evidence-based learning engineering methods to facilitate creation of adaptive online courseware. In: Ouyang, F., et al. (eds.) Artificial Intelligence in STEM Education: The Paradigmatic Shifts in Research, Education, and Technology, pp. 1–16. CSC Press, New York, NY (in press)
8.
go back to reference Lewis, M., et al.: Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019) Lewis, M., et al.: Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:​1910.​13461 (2019)
9.
go back to reference Du, X., et al.: Learning to ask: neural question generation for reading comprehension. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2017) Du, X., et al.: Learning to ask: neural question generation for reading comprehension. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2017)
10.
go back to reference Pyatkin, V., et al.: Asking it all: generating contextualized questions for any semantic role. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2021) Pyatkin, V., et al.: Asking it all: generating contextualized questions for any semantic role. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2021)
11.
go back to reference Bao, H., et al.: Unilmv2: pseudo-masked language models for unified language model pre-training. In: International Conference on Machine Learning. PMLR (2020) Bao, H., et al.: Unilmv2: pseudo-masked language models for unified language model pre-training. In: International Conference on Machine Learning. PMLR (2020)
12.
go back to reference Chan, Y.-H., Fan, Y.-C.: A recurrent BERT-based model for question generation. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering. Association for Computational Linguistics (2019) Chan, Y.-H., Fan, Y.-C.: A recurrent BERT-based model for question generation. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering. Association for Computational Linguistics (2019)
13.
go back to reference Qi, W., et al.: ProphetNet: Predicting future N-gram for sequence-to-sequence pre-training. In: Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics (2020) Qi, W., et al.: ProphetNet: Predicting future N-gram for sequence-to-sequence pre-training. In: Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics (2020)
14.
go back to reference Wang, Z., et al.: QG-net: a data-driven question generation model for educational content. In: Proceedings of the Fifth Annual ACM Conference on Learning at Scale (2018) Wang, Z., et al.: QG-net: a data-driven question generation model for educational content. In: Proceedings of the Fifth Annual ACM Conference on Learning at Scale (2018)
15.
go back to reference Wang, Z., Valdez, J., Mallick, D.B., Baraniuk, R.G.: Towards human-like educational question generation with large language models. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) Artificial Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part I, pp. 153–166. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-11644-5_13CrossRef Wang, Z., Valdez, J., Mallick, D.B., Baraniuk, R.G.: Towards human-like educational question generation with large language models. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) Artificial Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part I, pp. 153–166. Springer International Publishing, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-11644-5_​13CrossRef
16.
go back to reference Xiao, D., et al.: ERNIE-GEN: an enhanced multi-flow pre-training and fine-tuning framework for natural language generation. In: IJCAI (2020) Xiao, D., et al.: ERNIE-GEN: an enhanced multi-flow pre-training and fine-tuning framework for natural language generation. In: IJCAI (2020)
17.
go back to reference Du, X., Cardie, C.: Harvesting Paragraph-level Question-Answer Pairs from Wikipedia. Association for Computational Linguistics (2018) Du, X., Cardie, C.: Harvesting Paragraph-level Question-Answer Pairs from Wikipedia. Association for Computational Linguistics (2018)
18.
go back to reference Back, S., et al.: Learning to generate questions by learning to recover answer-containing sentences. In: Findings of the Association for Computational Linguistics (2021) Back, S., et al.: Learning to generate questions by learning to recover answer-containing sentences. In: Findings of the Association for Computational Linguistics (2021)
19.
go back to reference Subramanian, S., et al.: Neural Models for Key Phrase Extraction and Question Generation. Association for Computational Linguistics (2018) Subramanian, S., et al.: Neural Models for Key Phrase Extraction and Question Generation. Association for Computational Linguistics (2018)
20.
go back to reference Wang, B., et al.: Neural question generation with answer pivot. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020) Wang, B., et al.: Neural question generation with answer pivot. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)
21.
go back to reference Steuer, T., Filighera, A., Rensing, C.: Remember the facts? investigating answer-aware neural question generation for text comprehension. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 512–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_41CrossRef Steuer, T., Filighera, A., Rensing, C.: Remember the facts? investigating answer-aware neural question generation for text comprehension. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 512–523. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-52237-7_​41CrossRef
22.
go back to reference Willis, A., et al.: Key phrase extraction for generating educational question-answer pairs. In: Proceedings of the Sixth ACM Conference on Learning@ Scale (2019) Willis, A., et al.: Key phrase extraction for generating educational question-answer pairs. In: Proceedings of the Sixth ACM Conference on Learning@ Scale (2019)
23.
go back to reference Qu, F., et al.: Asking questions like educational experts: Automatically generating question-answer pairs on real-world examination data. arXiv preprint arXiv:2109.05179 (2021) Qu, F., et al.: Asking questions like educational experts: Automatically generating question-answer pairs on real-world examination data. arXiv preprint arXiv:​2109.​05179 (2021)
24.
go back to reference Devlin, J., et al.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) Devlin, J., et al.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805 (2018)
25.
go back to reference Shimmei, M., Matsuda, N.: Can’t inflate data? let the models unite and vote: data-agnostic method to avoid overfit with small data. In: 14th Inernational Conference on Educatinal Data Mining (to appear) Shimmei, M., Matsuda, N.: Can’t inflate data? let the models unite and vote: data-agnostic method to avoid overfit with small data. In: 14th Inernational Conference on Educatinal Data Mining (to appear)
27.
go back to reference Tamang, L.J., Banjade, R., Chapagain, J., Rus, V.: Automatic question generation for scaffolding self-explanations for code comprehension. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) Artificial Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part I, pp. 743–748. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-11644-5_77CrossRef Tamang, L.J., Banjade, R., Chapagain, J., Rus, V.: Automatic question generation for scaffolding self-explanations for code comprehension. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) Artificial Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part I, pp. 743–748. Springer International Publishing, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-11644-5_​77CrossRef
28.
go back to reference Chen, G., et al.: LearningQ: a large-scale dataset for educational question generation. In: Twelfth International AAAI Conference on Web and Social Media (2018) Chen, G., et al.: LearningQ: a large-scale dataset for educational question generation. In: Twelfth International AAAI Conference on Web and Social Media (2018)
29.
go back to reference Lai, G., et al.: RACE: Large-scale ReAding Comprehension Dataset From Examinations. Association for Computational Linguistics (2017) Lai, G., et al.: RACE: Large-scale ReAding Comprehension Dataset From Examinations. Association for Computational Linguistics (2017)
31.
go back to reference Kurdi, G., et al.: A systematic review of automatic question generation for educational purposes. Int. J. Artif. Intell. Educ. 30(1), 121–204 (2020)CrossRef Kurdi, G., et al.: A systematic review of automatic question generation for educational purposes. Int. J. Artif. Intell. Educ. 30(1), 121–204 (2020)CrossRef
Metadata
Title
Machine-Generated Questions Attract Instructors When Acquainted with Learning Objectives
Authors
Machi Shimmei
Norman Bier
Noboru Matsuda
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-36272-9_1

Premium Partner