Skip to main content
Top
Published in:

01-12-2023 | Original Article

Machine learning algorithm-based spam detection in social networks

Authors: M. Sumathi, S. P. Raja

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article explores the application of machine learning algorithms for spam detection in social networks, focusing on the challenges and limitations of existing methods. It introduces a voting classifier technique that combines multiple models to enhance accuracy and performance. The study compares various ML algorithms and demonstrates the effectiveness of the proposed method through experimental results. The authors also discuss the future enhancements and applications of their approach, making it a valuable resource for professionals in the field of cybersecurity and machine learning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abkenar SB, Kashani MH, Mahdipour E, Jameii SM (2021) Big data analytics meets social media: a systematic review of techniques, open issues, and future directions. Telematics Inf 57:101517CrossRef Abkenar SB, Kashani MH, Mahdipour E, Jameii SM (2021) Big data analytics meets social media: a systematic review of techniques, open issues, and future directions. Telematics Inf 57:101517CrossRef
go back to reference Ahmed F, Abulaish M (2013) A generic statistical approach for spam detection in online social networks. Comput Commun 36(10–11):1120–1129CrossRef Ahmed F, Abulaish M (2013) A generic statistical approach for spam detection in online social networks. Comput Commun 36(10–11):1120–1129CrossRef
go back to reference Ahmed N, Amin R, Aldabbas H, Koundal D (2022) Machine learning techniques for spam detection in Email and IoT platforms: analysis and research challenges. Secur Commun Netw 8:1–19CrossRef Ahmed N, Amin R, Aldabbas H, Koundal D (2022) Machine learning techniques for spam detection in Email and IoT platforms: analysis and research challenges. Secur Commun Netw 8:1–19CrossRef
go back to reference Alom Z, Carminati B, Ferrari E (2020) A deep learning model for Twitter spam detection. Online Soc Netw Media 18:1–12 Alom Z, Carminati B, Ferrari E (2020) A deep learning model for Twitter spam detection. Online Soc Netw Media 18:1–12
go back to reference Barushka A, Hajek P (2020) Spam detection on social networks using cost-sensitive feature selection and ensemble-based regularized deep neural networks. Neural Comput Appl 32:1–19CrossRef Barushka A, Hajek P (2020) Spam detection on social networks using cost-sensitive feature selection and ensemble-based regularized deep neural networks. Neural Comput Appl 32:1–19CrossRef
go back to reference Chakraborty M, Pal S, Pramanik R, Ravindranath Chowdary C (2016) Recent developments in social spam detection and combating techniques: a survey. Inf Process Manag 52(6):1053–1073CrossRef Chakraborty M, Pal S, Pramanik R, Ravindranath Chowdary C (2016) Recent developments in social spam detection and combating techniques: a survey. Inf Process Manag 52(6):1053–1073CrossRef
go back to reference Choi J, Jeon C (2021) Cost-based heterogeneous learning framework for real-time spam detection in social networks with expert decisions. IEEE Access 9:103573–103587CrossRef Choi J, Jeon C (2021) Cost-based heterogeneous learning framework for real-time spam detection in social networks with expert decisions. IEEE Access 9:103573–103587CrossRef
go back to reference Choudhury D, Acharjee T (2022) A novel approach to fake news detection in social networks using genetic algorithm applying machine learning classifiers. Multimed Tools Appl 82:1–17 Choudhury D, Acharjee T (2022) A novel approach to fake news detection in social networks using genetic algorithm applying machine learning classifiers. Multimed Tools Appl 82:1–17
go back to reference Elakkiya E, Selvakumar S (2022) Stratified hyperparameters optimization of feed-forward neural network for social network spam detection (SON2S). Soft Comput 8:1–20 Elakkiya E, Selvakumar S (2022) Stratified hyperparameters optimization of feed-forward neural network for social network spam detection (SON2S). Soft Comput 8:1–20
go back to reference Govil N, Agarwal K, Bansal A, Varshney A (2020a) A machine learning based spam detection mechanism. In: Fourth international conference on computing methodologies and communication (ICCMC 2020a), pp 954–957 Govil N, Agarwal K, Bansal A, Varshney A (2020a) A machine learning based spam detection mechanism. In: Fourth international conference on computing methodologies and communication (ICCMC 2020a), pp 954–957
go back to reference Govil N, Agarwal K, Bansal A, Varshney A (2020b) A machine learning based spam detection mechanism. In: 2020b Fourth international conference on computing methodologies and communication (ICCMC), Erode, India Govil N, Agarwal K, Bansal A, Varshney A (2020b) A machine learning based spam detection mechanism. In: 2020b Fourth international conference on computing methodologies and communication (ICCMC), Erode, India
go back to reference Gupta M, Bakliwal A, Agarwal S, Mehndiratta P (2018) A comparative study of spam SMS detection using machine learning classifiers. In: 2018 Eleventh international conference on contemporary computing (IC3), pp 1–7 Gupta M, Bakliwal A, Agarwal S, Mehndiratta P (2018) A comparative study of spam SMS detection using machine learning classifiers. In: 2018 Eleventh international conference on contemporary computing (IC3), pp 1–7
go back to reference Heidemann J, Klier M, Probst F (2012) Online social networks: a survey of a global phenomenon. Comput Netw 56:3866–3878CrossRef Heidemann J, Klier M, Probst F (2012) Online social networks: a survey of a global phenomenon. Comput Netw 56:3866–3878CrossRef
go back to reference Hu X, Tang J, Liu H (2014) Online social spammer detection. In: Proceeding 28th AAAI conference on artificial intelligence (AAAI), pp 59–65 Hu X, Tang J, Liu H (2014) Online social spammer detection. In: Proceeding 28th AAAI conference on artificial intelligence (AAAI), pp 59–65
go back to reference Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–529CrossRef Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–529CrossRef
go back to reference Jain G, Sharma M, Agarwal B (2019) Spam detection in social media using convolutional and long short term memory neural network. Ann Math Artif Intell 85:21–44CrossRef Jain G, Sharma M, Agarwal B (2019) Spam detection in social media using convolutional and long short term memory neural network. Ann Math Artif Intell 85:21–44CrossRef
go back to reference Janez-Martino F, Alaiz-Rodriguez R, Gonzalez-Castro V, Fidalgo E, Alegre E (2023) A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artif Intell Rev 56:1145–1173CrossRef Janez-Martino F, Alaiz-Rodriguez R, Gonzalez-Castro V, Fidalgo E, Alegre E (2023) A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artif Intell Rev 56:1145–1173CrossRef
go back to reference Jbara YHF, Mohamed HAS (2020) Twitter spammer identification using URL based detection. IOP Conf Ser Mater Sci Eng 925:1–7 Jbara YHF, Mohamed HAS (2020) Twitter spammer identification using URL based detection. IOP Conf Ser Mater Sci Eng 925:1–7
go back to reference Jenifer Darling Rosita P, Jacob WS (2022) Multi-objective genetic algorithm and CNN-based deep learning architectural scheme for effective spam detection. Int J Intell Netw 3:9–15 Jenifer Darling Rosita P, Jacob WS (2022) Multi-objective genetic algorithm and CNN-based deep learning architectural scheme for effective spam detection. Int J Intell Netw 3:9–15
go back to reference Karim A, Azam S, Shanmugam B, Kannoorpatti K, Alazab M (2019) A comprehensive survey for intelligent spam email detection. IEEE Access 7:168261–168295CrossRef Karim A, Azam S, Shanmugam B, Kannoorpatti K, Alazab M (2019) A comprehensive survey for intelligent spam email detection. IEEE Access 7:168261–168295CrossRef
go back to reference Kumar C, Bharti TS, Prakash S (2023) A hybrid data-driven framework for spam detection in online social network. In: International conference of machine learning and data engineering Kumar C, Bharti TS, Prakash S (2023) A hybrid data-driven framework for spam detection in online social network. In: International conference of machine learning and data engineering
go back to reference Madisetty S, Desarkar MS (2018) A neural network-based ensemble approach for spam detection in twitter. IEEE Trans Comput Soc Syst 5(4):973–984CrossRef Madisetty S, Desarkar MS (2018) A neural network-based ensemble approach for spam detection in twitter. IEEE Trans Comput Soc Syst 5(4):973–984CrossRef
go back to reference Masood F, Ammad G, Almogren A, Abbas A (2019) Spammer detection and fake user identification on social networks. IEEE Access 7:68140–68152CrossRef Masood F, Ammad G, Almogren A, Abbas A (2019) Spammer detection and fake user identification on social networks. IEEE Access 7:68140–68152CrossRef
go back to reference Mateen M, Iqbal MA, Aleem M, Islam MA (2017) A hybrid approach for spam detection for Twitter. In: 2017 14th International Bhurban conference on applied sciences and technology (IBCAST), Islamabad, Pakistan, pp 466–471 Mateen M, Iqbal MA, Aleem M, Islam MA (2017) A hybrid approach for spam detection for Twitter. In: 2017 14th International Bhurban conference on applied sciences and technology (IBCAST), Islamabad, Pakistan, pp 466–471
go back to reference Niranjani V, Agalya Y, Charunandhini K, Gayathri K, Gayathri R (2022) Spam detection for social media networks using machine learning. In:2022 8th International conference on advanced computing and communication systems (ICACCS), pp 2082–2088 Niranjani V, Agalya Y, Charunandhini K, Gayathri K, Gayathri R (2022) Spam detection for social media networks using machine learning. In:2022 8th International conference on advanced computing and communication systems (ICACCS), pp 2082–2088
go back to reference Pirozmand P, Sadeghilalimi M, Rahmani AA (2021) A feature selection approach for spam detection in social networks using gravitational force-based heuristic algorithm. J Amb Intell Human Comput 8:1–14 Pirozmand P, Sadeghilalimi M, Rahmani AA (2021) A feature selection approach for spam detection in social networks using gravitational force-based heuristic algorithm. J Amb Intell Human Comput 8:1–14
go back to reference Rodrigues AP, Fernandes R, Aakash A, Abhishek B, Shetty A (2022) Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques. Comput Intell Neurosci 2022:1–14CrossRef Rodrigues AP, Fernandes R, Aakash A, Abhishek B, Shetty A (2022) Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques. Comput Intell Neurosci 2022:1–14CrossRef
go back to reference Sharma R, Kaur G (2016) E-mail spam detection using SVM and RBF. Int J Mod Educ Comput Sci 8:57–63CrossRef Sharma R, Kaur G (2016) E-mail spam detection using SVM and RBF. Int J Mod Educ Comput Sci 8:57–63CrossRef
go back to reference Stringhini G, Kruegel C, Vigna G (2010) Detecting spammers on social networks. In Proceeding 26th annual computer security application conference (ACSAC), pp 1–9 Stringhini G, Kruegel C, Vigna G (2010) Detecting spammers on social networks. In Proceeding 26th annual computer security application conference (ACSAC), pp 1–9
go back to reference Sun N, Lin G, Qiu J, Rimba P (2022) Near real-time twitter spam detection with machine learning techniques. Int J Comput Appl 44:1–12 Sun N, Lin G, Qiu J, Rimba P (2022) Near real-time twitter spam detection with machine learning techniques. Int J Comput Appl 44:1–12
go back to reference Svadasu G, Adimoolam M (2022) Spam detection in social media using artificial neural network algorithm and comparing accuracy with support vector machine algorithm. In: 2022 International conference on business analytics for technology and security (ICBATS), pp 1–5 Svadasu G, Adimoolam M (2022) Spam detection in social media using artificial neural network algorithm and comparing accuracy with support vector machine algorithm. In: 2022 International conference on business analytics for technology and security (ICBATS), pp 1–5
go back to reference Swathi P (2018) Analysis on solutions for over-fitting and under-fitting in machine learning algorithms. Int J Innov Res Sci Eng Technol 7:10–15680 Swathi P (2018) Analysis on solutions for over-fitting and under-fitting in machine learning algorithms. Int J Innov Res Sci Eng Technol 7:10–15680
go back to reference Thomas M, Meshram BB (2023) Chso-DNFNet: spam detection in Twitter using feature fusion and optimized deep neuro fuzzy network. Adv Eng Softw 175:1–12CrossRef Thomas M, Meshram BB (2023) Chso-DNFNet: spam detection in Twitter using feature fusion and optimized deep neuro fuzzy network. Adv Eng Softw 175:1–12CrossRef
go back to reference Venkatewarlu B, Viswanath Shenoi V (2021) Optimized generative adversarial network with fractional calculus based feature fusion using twitter stream for spam detection. Inf Secur J Glob Perspect 8:1–20 Venkatewarlu B, Viswanath Shenoi V (2021) Optimized generative adversarial network with fractional calculus based feature fusion using twitter stream for spam detection. Inf Secur J Glob Perspect 8:1–20
go back to reference Vijayaraj N, Sumathi M, Rajkamal MU (2022) Decision trees to detect malware in a cloud computing environment. In: 2022 International conference on electronic systems and intelligent computing (ICESIC), pp 299–303 Vijayaraj N, Sumathi M, Rajkamal MU (2022) Decision trees to detect malware in a cloud computing environment. In: 2022 International conference on electronic systems and intelligent computing (ICESIC), pp 299–303
go back to reference Zhang Z, Hou R, Yang J (2020) Detection of social network spam based on improved extreme learning machine. IEEE Access 8:112003–112014CrossRef Zhang Z, Hou R, Yang J (2020) Detection of social network spam based on improved extreme learning machine. IEEE Access 8:112003–112014CrossRef
go back to reference Zhao C, Xin Y, Li X, Yang Y, Chen Y (2020) A heterogeneous ensemble learning framework for spam detection in social networks with imbalanced data. Appl Sci 10:1–18 Zhao C, Xin Y, Li X, Yang Y, Chen Y (2020) A heterogeneous ensemble learning framework for spam detection in social networks with imbalanced data. Appl Sci 10:1–18
go back to reference Zheng X, Zeng Z, Chen Z, Yuanlong Yu, Rong C (2015) Detecting spammers on social networks. Neurocomputing 159:27–34CrossRef Zheng X, Zeng Z, Chen Z, Yuanlong Yu, Rong C (2015) Detecting spammers on social networks. Neurocomputing 159:27–34CrossRef
go back to reference Zheng X, Zhang X, Yu Y, Kechadi T, Rong C (2016) ELM-based spammer detection in social networks. J Supercomput 72(8):2991–3005CrossRef Zheng X, Zhang X, Yu Y, Kechadi T, Rong C (2016) ELM-based spammer detection in social networks. J Supercomput 72(8):2991–3005CrossRef
Metadata
Title
Machine learning algorithm-based spam detection in social networks
Authors
M. Sumathi
S. P. Raja
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01108-6

Premium Partner