Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Machine Learning Approach for the Early Prediction of the Risk of Overweight and Obesity in Young People

Authors : Balbir Singh, Hissam Tawfik

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Obesity is a major global concern with more than 2.1 billion people overweight or obese worldwide which amounts to almost 30% of the global population. If the current trend continues, the overweight and obese population is likely to increase to 41% by 2030. Individuals developing signs of weight gain or obesity are also at a risk of developing serious illnesses such as type 2 diabetes, respiratory problems, heart disease and stroke. Some intervention measures such as physical activity and healthy eating can be a fundamental component to maintain a healthy lifestyle. Therefore, it is absolutely essential to detect childhood obesity as early as possible. This paper utilises the vast amount of data available via UK’s millennium cohort study in order to construct a machine learning driven model to predict young people at the risk of becoming overweight or obese. The childhood BMI values from the ages 3, 5, 7 and 11 are used to predict adolescents of age 14 at the risk of becoming overweight or obese. There is an inherent imbalance in the dataset of individuals with normal BMI and the ones at risk. The results obtained are encouraging and a prediction accuracy of over 90% for the target class has been achieved. Various issues relating to data preprocessing and prediction accuracy are addressed and discussed.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Dobbs, R., et al.: Overcoming obesity : an initial economic analysis, McKinsey Global Institute (2014) Dobbs, R., et al.: Overcoming obesity : an initial economic analysis, McKinsey Global Institute (2014)
2.
go back to reference Fat, L.N.: Children’s body mass index, overweight and obesity. Heal. Surv. Engl. (2014). Chapter 10 Fat, L.N.: Children’s body mass index, overweight and obesity. Heal. Surv. Engl. (2014). Chapter 10
3.
go back to reference Olds, T., et al.: Evidence that the prevalence of childhood overweight is plateauing: data from nine countries. Int. J. Pediatr. Obes. 6(5–6), 342–360 (2011) CrossRef Olds, T., et al.: Evidence that the prevalence of childhood overweight is plateauing: data from nine countries. Int. J. Pediatr. Obes. 6(5–6), 342–360 (2011) CrossRef
4.
go back to reference Rokholm, B., Baker, J.L., Sørensen, T.I.A.: The levelling off of the obesity epidemic since the year 1999 - a review of evidence and perspectives. Obes. Rev. 11, 835–846 (2010) CrossRef Rokholm, B., Baker, J.L., Sørensen, T.I.A.: The levelling off of the obesity epidemic since the year 1999 - a review of evidence and perspectives. Obes. Rev. 11, 835–846 (2010) CrossRef
5.
go back to reference Blüher, S., et al.: Age-specific stabilization in obesity prevalence in German children: a cross-sectional study from 1999 to 2008. Int. J. Pediatr. Obes. 6(sup3), e199–e206 (2011) CrossRef Blüher, S., et al.: Age-specific stabilization in obesity prevalence in German children: a cross-sectional study from 1999 to 2008. Int. J. Pediatr. Obes. 6(sup3), e199–e206 (2011) CrossRef
7.
go back to reference Wabitsch, M., Moss, A., Kromeyer-Hauschild, K.: Unexpected plateauing of childhood obesity rates in developed countries. BMC Med. 12, 17 (2014) CrossRef Wabitsch, M., Moss, A., Kromeyer-Hauschild, K.: Unexpected plateauing of childhood obesity rates in developed countries. BMC Med. 12, 17 (2014) CrossRef
8.
go back to reference Moody, A.: Adult anthropometric measures, overweight and obesity. In: Health and Social Care Information Centre (2013) Moody, A.: Adult anthropometric measures, overweight and obesity. In: Health and Social Care Information Centre (2013)
9.
go back to reference Singh, A.S., Mulder, C., Twisk, J.W.R., Van Mechelen, W., Chinapaw, M.J.M.: Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes. Rev. 9, 474–488 (2008) CrossRef Singh, A.S., Mulder, C., Twisk, J.W.R., Van Mechelen, W., Chinapaw, M.J.M.: Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes. Rev. 9, 474–488 (2008) CrossRef
10.
go back to reference Dietz, W.H.: Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics 101, 518–525 (1998) Dietz, W.H.: Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics 101, 518–525 (1998)
11.
go back to reference Engeland, A., Bjørge, T., Søgaard, A.J., Tverdal, A.: Body mass index in adolescence in relation to total mortality: 32-year follow-up of 227,000 Norwegian boys and girls. Am. J. Epidemiol. 157, 517–523 (2003) CrossRef Engeland, A., Bjørge, T., Søgaard, A.J., Tverdal, A.: Body mass index in adolescence in relation to total mortality: 32-year follow-up of 227,000 Norwegian boys and girls. Am. J. Epidemiol. 157, 517–523 (2003) CrossRef
12.
go back to reference Butland, B., et al.: Tackling Obesities: Future Choices – Project Report, 2nd edn. (2007) Butland, B., et al.: Tackling Obesities: Future Choices – Project Report, 2nd edn. (2007)
13.
go back to reference Freedman, D.S., Mei, Z., Srinivasan, S.R., Berenson, G.S., Dietz, W.H.: Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J. Pediatr. 150, 12–17 (2007) CrossRef Freedman, D.S., Mei, Z., Srinivasan, S.R., Berenson, G.S., Dietz, W.H.: Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J. Pediatr. 150, 12–17 (2007) CrossRef
14.
go back to reference Cole, T.J., Bellizzi, M.C., Flegal, K.M., Dietz, W.H.: Establishing a standard definition for child overweight and obesity worldwide. BMJ 320, 1–6 (2000) CrossRef Cole, T.J., Bellizzi, M.C., Flegal, K.M., Dietz, W.H.: Establishing a standard definition for child overweight and obesity worldwide. BMJ 320, 1–6 (2000) CrossRef
15.
go back to reference Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017) CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017) CrossRef
16.
go back to reference Szolovits, P., Patil, R.S., Schwartz, W.B.: Artificial intelligence in medical diagnosis. Ann. Intern. Med. 108(1), 80–87 (1988) CrossRef Szolovits, P., Patil, R.S., Schwartz, W.B.: Artificial intelligence in medical diagnosis. Ann. Intern. Med. 108(1), 80–87 (1988) CrossRef
17.
go back to reference Ishak, W.H.W., Siraj, F.: Artificial intelligence in medical application: an exploration. Health Inform. Eur. J. 16, 1–9 (2008) Ishak, W.H.W., Siraj, F.: Artificial intelligence in medical application: an exploration. Health Inform. Eur. J. 16, 1–9 (2008)
18.
go back to reference Jarvis-Selinger, S., Bates, J., Araki, Y., Lear, S.A.: Internet-based support for cardiovascular disease management. Int. J. Telemed. Appl. 2011, 9 (2011) Jarvis-Selinger, S., Bates, J., Araki, Y., Lear, S.A.: Internet-based support for cardiovascular disease management. Int. J. Telemed. Appl. 2011, 9 (2011)
19.
go back to reference Kumar, K., Thakur, G.S.M.: Advanced applications of neural networks and artificial intelligence: a review. Int. J. Inf. Technol. Comput. Sci. 4, 57 (2012) Kumar, K., Thakur, G.S.M.: Advanced applications of neural networks and artificial intelligence: a review. Int. J. Inf. Technol. Comput. Sci. 4, 57 (2012)
20.
go back to reference Jervis, B.W., et al.: Artificial neural network and spectrum analysis methods for detecting brain diseases from the CNV response in the electroencephalogram. IEE Proc. - Sci. Meas. Technol. 141, 432–440 (1994) CrossRef Jervis, B.W., et al.: Artificial neural network and spectrum analysis methods for detecting brain diseases from the CNV response in the electroencephalogram. IEE Proc. - Sci. Meas. Technol. 141, 432–440 (1994) CrossRef
21.
go back to reference Mantzaris, D.H., Anastassopoulos, G.C., Lymberopoulos, D.K.: Medical disease prediction using artificial neural networks. In: 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 (2008) Mantzaris, D.H., Anastassopoulos, G.C., Lymberopoulos, D.K.: Medical disease prediction using artificial neural networks. In: 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 (2008)
22.
go back to reference Khalaf, M., et al.: Machine learning approaches to the application of disease modifying therapy for sickle cell using classification models. Neurocomputing 228, 154–164 (2017) CrossRef Khalaf, M., et al.: Machine learning approaches to the application of disease modifying therapy for sickle cell using classification models. Neurocomputing 228, 154–164 (2017) CrossRef
23.
go back to reference Singh, B., Tawfik, H.: A machine learning approach for predicting weight gain risks in young adults. In: Conference Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019 (2019) Singh, B., Tawfik, H.: A machine learning approach for predicting weight gain risks in young adults. In: Conference Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019 (2019)
24.
go back to reference Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994) MATH Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994) MATH
25.
go back to reference Dugan, T.M., Mukhopadhyay, S., Carroll, A., Downs, S.: Machine learning techniques for prediction of early childhood obesity. Appl. Clin. Inform. 6, 506–520 (2015) CrossRef Dugan, T.M., Mukhopadhyay, S., Carroll, A., Downs, S.: Machine learning techniques for prediction of early childhood obesity. Appl. Clin. Inform. 6, 506–520 (2015) CrossRef
26.
go back to reference Novak, B., Bigec, M.: Application of artificial neural networks for childhood obesity prediction. In: Proceedings - 1995 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES 1995 (1995) Novak, B., Bigec, M.: Application of artificial neural networks for childhood obesity prediction. In: Proceedings - 1995 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES 1995 (1995)
27.
go back to reference Adnan, M.H.B.M., Husain, W., Damanhoori, F.: A survey on utilization of data mining for childhood obesity prediction. In: 8th Asia-Pacific Symposium Information Telecommunication Technologies (2010) Adnan, M.H.B.M., Husain, W., Damanhoori, F.: A survey on utilization of data mining for childhood obesity prediction. In: 8th Asia-Pacific Symposium Information Telecommunication Technologies (2010)
28.
go back to reference Hariz, M., Adnan, B.M., Husain, W., Aini, N., Rashid, A.: Parameter identification and selection for childhood obesity prediction using data mining. In: 2nd International Conference on Management and Artificial Intelligence (2012) Hariz, M., Adnan, B.M., Husain, W., Aini, N., Rashid, A.: Parameter identification and selection for childhood obesity prediction using data mining. In: 2nd International Conference on Management and Artificial Intelligence (2012)
29.
go back to reference Zhang, S., Tjortjis, C., Zeng, X., Qiao, H., Buchan, I., Keane, J.: Comparing data mining methods with logistic regression in childhood obesity prediction. Inf. Syst. Front. 11, 449–460 (2009) CrossRef Zhang, S., Tjortjis, C., Zeng, X., Qiao, H., Buchan, I., Keane, J.: Comparing data mining methods with logistic regression in childhood obesity prediction. Inf. Syst. Front. 11, 449–460 (2009) CrossRef
30.
go back to reference Fergus, P., et al.: A machine learning approach to measure and monitor physical activity in children. Neurocomputing 228, 220–230 (2017) CrossRef Fergus, P., et al.: A machine learning approach to measure and monitor physical activity in children. Neurocomputing 228, 220–230 (2017) CrossRef
31.
go back to reference Smith, K., Joshi, H.: The Millennium Cohort Study. Popul. Trends 107, 30–34 (2002) Smith, K., Joshi, H.: The Millennium Cohort Study. Popul. Trends 107, 30–34 (2002)
32.
go back to reference Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) CrossRef Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) CrossRef
Metadata
Title
Machine Learning Approach for the Early Prediction of the Risk of Overweight and Obesity in Young People
Authors
Balbir Singh
Hissam Tawfik
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_39