Skip to main content
Top
Published in: Wireless Networks 3/2020

01-03-2019

Machine learning based adaptive modulation scheme for energy harvesting cooperative relay networks

Authors: Kang Liu, Qi Zhu

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy harvesting has emerged as a promising technique in next general wireless communication. Although plenty of studies have already focused on the energy management in energy harvesting relay network, the problem is still open when we consider using different modulation method for the nodes in the network. In this paper, we propose an offline transmission scheme to improve the total throughput of the relay cooperative system. Both the source node and the relay node adjust M-ary quadrature amplitude modulation level and choose the corresponding transmitted power. We first determine the QAM level for the source node according to the data buffer state. Following this, we further use machine learning method to adaptively choose its QAM level based on whole view of the system information including channel state information and energy storage information. We have also proposed an online transmission scheme for the relay to choose QAM level under causal system information based on classification method. Taking the result of the offline scheme as training data, we use QAM level to divide channels into different classes and using the channel information to get the threshold of different class. We also need to dynamic adjust the threshold considering the energy storage information. With the class, we can determine the QAM level under present channel information. The simulation result show that the performance of the offline scheme is much better compared to the best effort scheme and the online scheme also improve the performance but still litter worse than the offline scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gunduz, D., Stamatiou, K., Michelusi, N., et al. (2014). Designing intelligent energy harvesting communication systems. IEEE Communications Magazine,52(1), 210–216.CrossRef Gunduz, D., Stamatiou, K., Michelusi, N., et al. (2014). Designing intelligent energy harvesting communication systems. IEEE Communications Magazine,52(1), 210–216.CrossRef
2.
go back to reference Laneman, J. N., & Wornell, G. W. (2002). Energy-efficient antenna sharing and relaying for wireless networks. In Wireless communications and networking confernce, 2000. WCNC (pp. 7–12). IEEE. Laneman, J. N., & Wornell, G. W. (2002). Energy-efficient antenna sharing and relaying for wireless networks. In Wireless communications and networking confernce, 2000. WCNC (pp. 7–12). IEEE.
3.
go back to reference Ozel, O., Tutuncuoglu, K., Yang, J., et al. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications,29(8), 1732–1743.CrossRef Ozel, O., Tutuncuoglu, K., Yang, J., et al. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications,29(8), 1732–1743.CrossRef
4.
go back to reference Ho, C. K., & Zhang, R. (2011). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing,60(9), 4808–4818.MathSciNetCrossRef Ho, C. K., & Zhang, R. (2011). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing,60(9), 4808–4818.MathSciNetCrossRef
5.
go back to reference Blasco, P., Gunduz, D., & Dohler, M. (2013). A learning theoretic approach to energy harvesting communication system optimization. IEEE Transactions on Wireless Communications,12(4), 1872–1882.CrossRef Blasco, P., Gunduz, D., & Dohler, M. (2013). A learning theoretic approach to energy harvesting communication system optimization. IEEE Transactions on Wireless Communications,12(4), 1872–1882.CrossRef
6.
go back to reference Khairnar, P. S., & Mehta, N. B. (2011). Power and discrete rate adaptation for energy harvesting wireless nodes. In IEEE International Conference on Communications (pp. 1–5). IEEE. Khairnar, P. S., & Mehta, N. B. (2011). Power and discrete rate adaptation for energy harvesting wireless nodes. In IEEE International Conference on Communications (pp. 1–5). IEEE.
7.
go back to reference Sakulkar, P., & Krishnamachari, B. (2016). Online learning schemes for power allocation in energy harvesting communications. IEEE Transactions on Information Theory,PP(99), 1.MATH Sakulkar, P., & Krishnamachari, B. (2016). Online learning schemes for power allocation in energy harvesting communications. IEEE Transactions on Information Theory,PP(99), 1.MATH
8.
go back to reference Medepally, B., & Mehta, N. B. (2010). Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Transactions on Wireless Communications,9(11), 3543–3553.CrossRef Medepally, B., & Mehta, N. B. (2010). Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Transactions on Wireless Communications,9(11), 3543–3553.CrossRef
9.
go back to reference Xia, Y., Chen, H., Fan, L., et al. (2014). Optimal power control for source and relay in energy harvesting relay networks. In International ICST conference on communications and networking in China (pp. 942–947). IEEE. Xia, Y., Chen, H., Fan, L., et al. (2014). Optimal power control for source and relay in energy harvesting relay networks. In International ICST conference on communications and networking in China (pp. 942–947). IEEE.
10.
go back to reference Gunduz, D., & Devillers, B. (2011). Two-hop communication with energy harvesting. In IEEE international workshop on computational advances in multi-sensor adaptive processing (pp. 201–204). IEEE. Gunduz, D., & Devillers, B. (2011). Two-hop communication with energy harvesting. In IEEE international workshop on computational advances in multi-sensor adaptive processing (pp. 201–204). IEEE.
11.
go back to reference Luo, Y., Zhang, J., & Letaief, K. B. (2013). Optimal scheduling and power allocation for two-hop energy harvesting communication systems. IEEE Transactions on Wireless Communications,12(9), 4729–4741.CrossRef Luo, Y., Zhang, J., & Letaief, K. B. (2013). Optimal scheduling and power allocation for two-hop energy harvesting communication systems. IEEE Transactions on Wireless Communications,12(9), 4729–4741.CrossRef
12.
go back to reference Ahmed, I., Ikhlef, A., Schober, R., et al. (2014). Power allocation for conventional and buffer-aided link adaptive relaying systems with energy harvesting nodes. IEEE Transactions on Wireless Communications,13(3), 1182–1195.CrossRef Ahmed, I., Ikhlef, A., Schober, R., et al. (2014). Power allocation for conventional and buffer-aided link adaptive relaying systems with energy harvesting nodes. IEEE Transactions on Wireless Communications,13(3), 1182–1195.CrossRef
13.
go back to reference Hakami, V., & Dehghan, M. (2017). Distributed power control for delay optimization in energy harvesting cooperative relay networks. IEEE Transactions on Vehicular Technology,66(6), 4742–4755.CrossRef Hakami, V., & Dehghan, M. (2017). Distributed power control for delay optimization in energy harvesting cooperative relay networks. IEEE Transactions on Vehicular Technology,66(6), 4742–4755.CrossRef
14.
go back to reference Ma, R., & Zhang, W. (2015). Variable-rate variable-power MQAM for energy harvesting communications with 1-bit feedback. In IEEE international conference on communications (pp. 4670–4674). IEEE. Ma, R., & Zhang, W. (2015). Variable-rate variable-power MQAM for energy harvesting communications with 1-bit feedback. In IEEE international conference on communications (pp. 4670–4674). IEEE.
15.
go back to reference Khan, D., Jan, L., &Afridi, S. K. (2017). Improving the capacity of MQAM technique using adaptive modulation. In International conference on control, decision and information technologies (pp. 0657–0661). Khan, D., Jan, L., &Afridi, S. K. (2017). Improving the capacity of MQAM technique using adaptive modulation. In International conference on control, decision and information technologies (pp. 0657–0661).
16.
go back to reference Chang, H. L. (2002). Corrections to “Variable-rate variable-power mqam for fading channels”. IEEE Transactions on Communications,50(50), 1860.CrossRef Chang, H. L. (2002). Corrections to “Variable-rate variable-power mqam for fading channels”. IEEE Transactions on Communications,50(50), 1860.CrossRef
17.
go back to reference Qian, L. P., Feng, G., & Leung, V. C. M. (2016). Optimal transmission policies for relay communication networks with ambient energy harvesting relays. Piscataway: IEEE Press.CrossRef Qian, L. P., Feng, G., & Leung, V. C. M. (2016). Optimal transmission policies for relay communication networks with ambient energy harvesting relays. Piscataway: IEEE Press.CrossRef
Metadata
Title
Machine learning based adaptive modulation scheme for energy harvesting cooperative relay networks
Authors
Kang Liu
Qi Zhu
Publication date
01-03-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01967-y

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue