Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-01-2021 | Issue 1/2021

Journal of Network and Systems Management 1/2021

Machine Learning Based Classification Accuracy of Encrypted Service Channels: Analysis of Various Factors

Journal:
Journal of Network and Systems Management > Issue 1/2021
Authors:
Ali Safari Khatouni, Nabil Seddigh, Biswajit Nandy, Nur Zincir-Heywood
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Visibility into network traffic is a key requirement for different security and network monitoring tools. Recent trends in the evolution of Internet traffic present a challenge for traditional traffic analysis methods to achieve accurate classification of Internet traffic including Voice over IP (VoIP), text messaging, video, and audio services among others. A key aspect of this trend is the rising levels of encrypted multiple service channels where the payload is opaque to middleboxes in the network. In such scenarios, traditional approaches such as Deep Packet Inspection (DPI) or examination of Port numbers are unable to achieve the classification accuracy required. This work investigates Machine Learning-based network traffic classifiers as a means of accurately classifying encrypted multiple service channels. The study carries out a thorough study which (i) proposes and evaluates two machine learning-based frameworks for multiple service channels analysis; (ii) undertakes feature engineering to identify the minimum number of features required to obtain high accuracy while reducing the effects of over-fitting; (iii) explores the portability and robustness of the frameworks trained models under different network conditions: location, time, and volume; and (iv) collects and analyzes a large-scale dataset including nine classes of services, for benchmarking purposes.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Journal of Network and Systems Management 1/2021 Go to the issue

Premium Partner

    Image Credits