Skip to main content
Top

2025 | OriginalPaper | Chapter

Machine Learning–Based Method for Structural Damage Detection

Authors : Daniel Irawan, Evgeny V. Morozov, Murat Tahtali

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structural damage assessment has become a necessity in the modern era. Researchers are trying to come up with better and faster ways to regulate structures’ health since traditional nondestructive testing (NDT) methods such as visual inspection take longer time to carry out and it is sensitive to the user’s skill in operating the apparatuses. Various methods incorporating reverse algorithms have been explored with the help of machine learning; however, we found out that the use of pretrained convolutional neural network (CNN) in detecting damage has not been explored widely. In this study, an ensemble network of CNNs is built based on GoogLeNet architecture to test its capability in detecting structural damages in plates. There are two cases of plate structure being tested for the model: isotropic plate (metallic structure) and orthotropic plate (composite structure). The damage induced in those plates is simulated with a reduction in mechanical properties, that is, elastic modulus in isotropic case and multidirectional elastic modulus in orthotropic case. The models try to pinpoint the location parameters of the damage in the plate and to quantify the severity of the damage itself by getting input variables from the modal properties of the plates. From the individual models, the information is then gathered using an ensemble network which is expected to improve the overall accuracy. The results from the final model show good correlation between predicted parameters and the actual case with promising results for further research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Szegedy C., Ioffe S., Vanhoucke V., Alemi, A.A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. (2017). [Online]. Available: www.aaai.orgCrossRef Szegedy C., Ioffe S., Vanhoucke V., Alemi, A.A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. (2017). [Online]. Available: www.​aaai.​orgCrossRef
Metadata
Title
Machine Learning–Based Method for Structural Damage Detection
Authors
Daniel Irawan
Evgeny V. Morozov
Murat Tahtali
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_17