Skip to main content
Top
Published in: Wireless Networks 7/2019

04-01-2019

Machine learning based optimal renewable energy allocation in sustained wireless sensor networks

Authors: Amandeep Sharma, Ajay Kakkar

Published in: Wireless Networks | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The environmental energy harvesting is adjudged as a reliable solution to power the wireless nodes for infinite time and assuring uninterrupted operation of deployed network nodes. But uncertain energy availability initiates an important research issue of energy management in rechargeable sensor nodes. An integrated approach of energy assignment principles with adaptive duty cycling has been proposed to efficiently utilize the available energy and to maximize the node performance. The R interface based machine learning ensemble approach has been used for solar irradiance prediction to pre-estimate the node duty cycle. Dynamic programming based optimization problem has been used for real time adaption of pre-computed node duty cycle. The effectiveness of proposed work has been validated using MATLAB interface by extensive simulations on real time solar energy profiles in terms of magnitude and stability of sensors average duty cycle. The proposed algorithm achieves an average duty cycle of 65% to 69% with a limit of 70% maximum duty cycle irrespective of irregular radiation patterns throughout the day as well as for different forecasting horizons. The results shows minimum variation in estimated and real time energy profiles in stable weather conditions and optimize the duty cycle in irregular weather conditions. The results also shows minimum variation (\(>2\%\)) in estimated and real time energy profiles in stable weather conditions and optimize the duty cycle in irregular weather conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 1–32.CrossRef Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 1–32.CrossRef
2.
go back to reference Fu, A. C., Modiano, E., & Tsitsiklis, J. N. (2003). Optimal energy allocation and admission control for communications satellites. IEEE/ACM Transactions on Networking, 11(3), 488–500.CrossRef Fu, A. C., Modiano, E., & Tsitsiklis, J. N. (2003). Optimal energy allocation and admission control for communications satellites. IEEE/ACM Transactions on Networking, 11(3), 488–500.CrossRef
3.
go back to reference Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. IEEE Communications Magazine, 44(4), 108–114.CrossRef Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. IEEE Communications Magazine, 44(4), 108–114.CrossRef
4.
go back to reference Sharma, V., Mukherji, U., Joseph, V., & Gupta, S. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 9(4), 1326–1336.CrossRef Sharma, V., Mukherji, U., Joseph, V., & Gupta, S. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 9(4), 1326–1336.CrossRef
5.
go back to reference Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111.CrossRef Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111.CrossRef
6.
go back to reference Chaturvedi, D. (2016). Solar power forecasting: A review. International Journal of Computer Applications, 145(6), 28–50.CrossRef Chaturvedi, D. (2016). Solar power forecasting: A review. International Journal of Computer Applications, 145(6), 28–50.CrossRef
7.
go back to reference Gagne, D. J., McGovern, A., Haupt, S. E., & Williams, J. K. (2017). Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Solar Energy, 150, 383–393.CrossRef Gagne, D. J., McGovern, A., Haupt, S. E., & Williams, J. K. (2017). Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Solar Energy, 150, 383–393.CrossRef
8.
go back to reference Yadav, A. K., & Chandel, S. (2014). Solar radiation prediction using artificial neural network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772–781.CrossRef Yadav, A. K., & Chandel, S. (2014). Solar radiation prediction using artificial neural network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772–781.CrossRef
9.
go back to reference Fidan, M., Hocaoğlu, F. O., & Gerek, Ö. N. (2014). Harmonic analysis based hourly solar radiation forecasting model. IET Renewable Power Generation, 9(3), 218–227.CrossRef Fidan, M., Hocaoğlu, F. O., & Gerek, Ö. N. (2014). Harmonic analysis based hourly solar radiation forecasting model. IET Renewable Power Generation, 9(3), 218–227.CrossRef
10.
go back to reference Jiménez-Pérez, P. F., & Mora-López, L. (2016). Modeling and forecasting hourly global solar radiation using clustering and classification techniques. Solar Energy, 135, 682–691.CrossRef Jiménez-Pérez, P. F., & Mora-López, L. (2016). Modeling and forecasting hourly global solar radiation using clustering and classification techniques. Solar Energy, 135, 682–691.CrossRef
11.
go back to reference Lin, K.-P., & Pai, P.-F. (2016). Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. Journal of Cleaner Production, 134, 456–462.CrossRef Lin, K.-P., & Pai, P.-F. (2016). Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. Journal of Cleaner Production, 134, 456–462.CrossRef
12.
go back to reference Sharma, A., & Kakkar, A. (2017). Development of modified pro-energy algorithm for future solar irradiance estimation using level and trend factors in time series analysis. Journal of Renewable and Sustainable Energy, 9(3), 033701–033716.CrossRef Sharma, A., & Kakkar, A. (2017). Development of modified pro-energy algorithm for future solar irradiance estimation using level and trend factors in time series analysis. Journal of Renewable and Sustainable Energy, 9(3), 033701–033716.CrossRef
13.
go back to reference Sharma, A., & Kakkar, A. (2017). Forecasting daily global solar irradiance generation using machine learning. Renewable and Sustainable Energy Reviews, 82, 2254–2269.CrossRef Sharma, A., & Kakkar, A. (2017). Forecasting daily global solar irradiance generation using machine learning. Renewable and Sustainable Energy Reviews, 82, 2254–2269.CrossRef
14.
go back to reference Sheng, H., Xiao, J., Cheng, Y., Ni, Q., & Wang, S. (2018). Short-term solar power forecasting based on weighted gaussian process regression. IEEE Transactions on Industrial Electronics, 65(1), 300–308.CrossRef Sheng, H., Xiao, J., Cheng, Y., Ni, Q., & Wang, S. (2018). Short-term solar power forecasting based on weighted gaussian process regression. IEEE Transactions on Industrial Electronics, 65(1), 300–308.CrossRef
15.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
16.
go back to reference Xu, Y., Heidemann, J., Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on Mobile computing and networking (pp. 70–84). ACM. Xu, Y., Heidemann, J., Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on Mobile computing and networking (pp. 70–84). ACM.
17.
go back to reference Perkins, C., Belding-Royer, E., Das, S. (2003). Ad hoc on-demand distance vector (aodv) routing. Technical report. Perkins, C., Belding-Royer, E., Das, S. (2003). Ad hoc on-demand distance vector (aodv) routing. Technical report.
18.
go back to reference Johnson, D. B., Maltz, D. A., Broch, J., et al. (2001). Dsr: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking, 5, 139–172. Johnson, D. B., Maltz, D. A., Broch, J., et al. (2001). Dsr: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking, 5, 139–172.
19.
go back to reference Younis, M., Youssef, M., Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In 10th IEEE international symposium on modeling, analysis and simulation of computer and telecommunications systems, 2002. MASCOTS 2002. Proceedings (pp. 129–136). IEEE. Younis, M., Youssef, M., Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In 10th IEEE international symposium on modeling, analysis and simulation of computer and telecommunications systems, 2002. MASCOTS 2002. Proceedings (pp. 129–136). IEEE.
20.
go back to reference Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2003). Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks, 42(6), 697–716.MATHCrossRef Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2003). Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks, 42(6), 697–716.MATHCrossRef
21.
go back to reference Baek, S. J., De Veciana, G., & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on selected Areas in Communications, 22(6), 1130–1140.CrossRef Baek, S. J., De Veciana, G., & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on selected Areas in Communications, 22(6), 1130–1140.CrossRef
22.
go back to reference Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transactions on Wireless Communications, 5(3), 531–539.CrossRef Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transactions on Wireless Communications, 5(3), 531–539.CrossRef
23.
go back to reference Farkas, J., Hombs, B., Tranquilli, J., Mo, S., Sherman, M., Gu, J., Fette, B. (2010). Power aware scheduling and power control techniques for multiuser detection enabled wireless mobile ad-hoc network, In Military communications conference, 2010-MILCOM 2010 (pp. 110–115). IEEE. Farkas, J., Hombs, B., Tranquilli, J., Mo, S., Sherman, M., Gu, J., Fette, B. (2010). Power aware scheduling and power control techniques for multiuser detection enabled wireless mobile ad-hoc network, In Military communications conference, 2010-MILCOM 2010 (pp. 110–115). IEEE.
25.
go back to reference Moser, C., Thiele, L., Brunelli, D., & Benini, L. (2010). Adaptive power management for environmentally powered systems. IEEE Transactions on Computers, 59(4), 478–491.MathSciNetMATHCrossRef Moser, C., Thiele, L., Brunelli, D., & Benini, L. (2010). Adaptive power management for environmentally powered systems. IEEE Transactions on Computers, 59(4), 478–491.MathSciNetMATHCrossRef
26.
go back to reference Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Transactions on Communications, 58(7), 2116–2126.CrossRef Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Transactions on Communications, 58(7), 2116–2126.CrossRef
27.
go back to reference Noh, D. K., & Kang, K. (2011). Balanced energy allocation scheme for a solar-powered sensor system and its effects on network-wide performance. Journal of Computer and System Sciences, 77(5), 917–932.MathSciNetMATHCrossRef Noh, D. K., & Kang, K. (2011). Balanced energy allocation scheme for a solar-powered sensor system and its effects on network-wide performance. Journal of Computer and System Sciences, 77(5), 917–932.MathSciNetMATHCrossRef
28.
go back to reference Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.CrossRef Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.CrossRef
29.
go back to reference Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetMATHCrossRef Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetMATHCrossRef
30.
go back to reference Castiglione, P., Simeone, O., Erkip, E., & Zemen, T. (2012). Energy management policies for energy-neutral source-channel coding. IEEE Transactions on Communications, 60(9), 2668–2678.CrossRef Castiglione, P., Simeone, O., Erkip, E., & Zemen, T. (2012). Energy management policies for energy-neutral source-channel coding. IEEE Transactions on Communications, 60(9), 2668–2678.CrossRef
31.
go back to reference Reddy, S., & Murthy, C. R. (2012). Dual-stage power management algorithms for energy harvesting sensors. IEEE Transactions on Wireless Communications, 11(4), 1434–1445.CrossRef Reddy, S., & Murthy, C. R. (2012). Dual-stage power management algorithms for energy harvesting sensors. IEEE Transactions on Wireless Communications, 11(4), 1434–1445.CrossRef
32.
go back to reference Bhattacharjee, S., & Bandyopadhyay, S. (2013). Lifetime maximizing dynamic energy efficient routing protocol for multi hop wireless networks. Simulation Modelling Practice and Theory, 32, 15–29.CrossRef Bhattacharjee, S., & Bandyopadhyay, S. (2013). Lifetime maximizing dynamic energy efficient routing protocol for multi hop wireless networks. Simulation Modelling Practice and Theory, 32, 15–29.CrossRef
33.
go back to reference Luo, D., Zhu, X., Wu, X., Chen, G. (2011). Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In INFOCOM, 2011 Proceedings IEEE (pp. 1566–1574). IEEE. Luo, D., Zhu, X., Wu, X., Chen, G. (2011). Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In INFOCOM, 2011 Proceedings IEEE (pp. 1566–1574). IEEE.
34.
go back to reference Tan, H. Ö., & Körpeolu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.CrossRef Tan, H. Ö., & Körpeolu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.CrossRef
35.
go back to reference Ok, C.-S., Lee, S., Mitra, P., & Kumara, S. (2009). Distributed energy balanced routing for wireless sensor networks. Computers & Industrial Engineering, 57(1), 125–135.CrossRef Ok, C.-S., Lee, S., Mitra, P., & Kumara, S. (2009). Distributed energy balanced routing for wireless sensor networks. Computers & Industrial Engineering, 57(1), 125–135.CrossRef
36.
go back to reference Hosseinimehr, T., & Tabesh, A. (2016). Magnetic field energy harvesting from ac lines for powering wireless sensor nodes in smart grids. IEEE Transactions on Industrial Electronics, 63(8), 4947–4954. Hosseinimehr, T., & Tabesh, A. (2016). Magnetic field energy harvesting from ac lines for powering wireless sensor nodes in smart grids. IEEE Transactions on Industrial Electronics, 63(8), 4947–4954.
37.
go back to reference Sarma, H. K. D., Kar, A., Mall, R. (2010). Energy efficient and reliable routing for mobile wireless sensor networks. In 2010 international conference on distributed computing in sensor systems workshops (DCOSSW 2010) (pp. 1–6). IEEE. Sarma, H. K. D., Kar, A., Mall, R. (2010). Energy efficient and reliable routing for mobile wireless sensor networks. In 2010 international conference on distributed computing in sensor systems workshops (DCOSSW 2010) (pp. 1–6). IEEE.
38.
go back to reference Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef
39.
go back to reference Abdul-Salaam, G., Abdullah, A. H., & Anisi, M. H. (2017). Energy-efficient data reporting for navigation in position-free hybrid wireless sensor networks. IEEE Sensors Journal, 17(7), 2289–2297.CrossRef Abdul-Salaam, G., Abdullah, A. H., & Anisi, M. H. (2017). Energy-efficient data reporting for navigation in position-free hybrid wireless sensor networks. IEEE Sensors Journal, 17(7), 2289–2297.CrossRef
40.
go back to reference Zhang, P., Nevat, I., Peters, G. W., Septier, F., & Osborne, M. A. (2018). Spatial field reconstruction and sensor selection in heterogeneous sensor networks with stochastic energy harvesting. IEEE Transactions on Signal Processing, 66(9), 2245–2257.MathSciNetMATHCrossRef Zhang, P., Nevat, I., Peters, G. W., Septier, F., & Osborne, M. A. (2018). Spatial field reconstruction and sensor selection in heterogeneous sensor networks with stochastic energy harvesting. IEEE Transactions on Signal Processing, 66(9), 2245–2257.MathSciNetMATHCrossRef
41.
go back to reference Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. (2018). Incomplete csi based resource optimization in swipt enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. (2018). Incomplete csi based resource optimization in swipt enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef
42.
go back to reference Bhardwaj, M., Chandrakasan, A. P. (2002). Bounding the lifetime of sensor networks via optimal role assignments. In INFOCOM 2002. Twenty-first annual joint conference of the IEEEE computer and communications societies. Proceedings (Vol. 3, pp. 1587–1596). IEEE. Bhardwaj, M., Chandrakasan, A. P. (2002). Bounding the lifetime of sensor networks via optimal role assignments. In INFOCOM 2002. Twenty-first annual joint conference of the IEEEE computer and communications societies. Proceedings (Vol. 3, pp. 1587–1596). IEEE.
43.
go back to reference Giridhar, A., Kumar, P. (2005). Maximizing the functional lifetime of sensor networks. In Fourth international symposium on information processing in sensor networks, IPSN 2005 (pp. 5–12). IEEE. Giridhar, A., Kumar, P. (2005). Maximizing the functional lifetime of sensor networks. In Fourth international symposium on information processing in sensor networks, IPSN 2005 (pp. 5–12). IEEE.
44.
go back to reference Kansal, A., Ramamoorthy, A., Srivastava, M. B., Pottie, G. J. (2005). On sensor network lifetime and data distortion. In International symposium on information theory, ISIT 2005. Proceedings (pp. 6–10). IEEE. Kansal, A., Ramamoorthy, A., Srivastava, M. B., Pottie, G. J. (2005). On sensor network lifetime and data distortion. In International symposium on information theory, ISIT 2005. Proceedings (pp. 6–10). IEEE.
45.
go back to reference Jeong, J., & Culler, D. (2012). A practical theory of micro-solar power sensor networks. ACM Transactions on Sensor Networks (TOSN), 9(1), 9.CrossRef Jeong, J., & Culler, D. (2012). A practical theory of micro-solar power sensor networks. ACM Transactions on Sensor Networks (TOSN), 9(1), 9.CrossRef
46.
go back to reference Del Testa, D., Michelusi, N., & Zorzi, M. (2016). Optimal transmission policies for two-user energy harvesting device networks with limited state-of-charge knowledge. IEEE Transactions on Wireless Communications, 15(2), 1393–1405.CrossRef Del Testa, D., Michelusi, N., & Zorzi, M. (2016). Optimal transmission policies for two-user energy harvesting device networks with limited state-of-charge knowledge. IEEE Transactions on Wireless Communications, 15(2), 1393–1405.CrossRef
47.
go back to reference Erdem, H., & Gungor, V. (2018). On the lifetime analysis of energy harvesting sensor nodes in smart grid environments. Ad Hoc Networks, 75, 98–105.CrossRef Erdem, H., & Gungor, V. (2018). On the lifetime analysis of energy harvesting sensor nodes in smart grid environments. Ad Hoc Networks, 75, 98–105.CrossRef
48.
go back to reference Zhao, Y., Govindan, R., & Estrin, D. (2002). Residual energy scans for monitoring wireless sensor networks. Los Angeles: Center for Embedded Network Sensing. Zhao, Y., Govindan, R., & Estrin, D. (2002). Residual energy scans for monitoring wireless sensor networks. Los Angeles: Center for Embedded Network Sensing.
49.
go back to reference Jiang, X., Polastre, J., Culler, D. (2005). Perpetual environmentally powered sensor networks. In Proceedings of the 4th international symposium on information processing in sensor networks (p. 65). IEEE Press. Jiang, X., Polastre, J., Culler, D. (2005). Perpetual environmentally powered sensor networks. In Proceedings of the 4th international symposium on information processing in sensor networks (p. 65). IEEE Press.
50.
go back to reference Mora-Merchan, J., Larios, D., Barbancho, J., Molina, F. J., Sevillano, J. L., & León, C. (2013). mtossim: A simulator that estimates battery lifetime in wireless sensor networks. Simulation Modelling Practice and Theory, 31, 39–51.CrossRef Mora-Merchan, J., Larios, D., Barbancho, J., Molina, F. J., Sevillano, J. L., & León, C. (2013). mtossim: A simulator that estimates battery lifetime in wireless sensor networks. Simulation Modelling Practice and Theory, 31, 39–51.CrossRef
51.
go back to reference Kansal, A., Potter, D., & Srivastava, M. B. (2004). Performance aware tasking for environmentally powered sensor networks. ACM SIGMETRICS Performance Evaluation Review, 32(1), 223–234.CrossRef Kansal, A., Potter, D., & Srivastava, M. B. (2004). Performance aware tasking for environmentally powered sensor networks. ACM SIGMETRICS Performance Evaluation Review, 32(1), 223–234.CrossRef
52.
go back to reference Niyato, D., Hossain, E., & Fallahi, A. (2007). Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks: Performance analysis and optimization. IEEE Transactions on Mobile Computing, 6(2), 221–236.CrossRef Niyato, D., Hossain, E., & Fallahi, A. (2007). Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks: Performance analysis and optimization. IEEE Transactions on Mobile Computing, 6(2), 221–236.CrossRef
53.
go back to reference Vigorito, C. M., Ganesan, D., Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, SECON’07 (pp. 21–30). IEEE. Vigorito, C. M., Ganesan, D., Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, SECON’07 (pp. 21–30). IEEE.
54.
go back to reference Gu, Y., Zhu, T., He, T. (2009). Esc: Energy synchronized communication in sustainable sensor networks. In 17th IEEE international conference on network protocols, ICNP 2009 (pp. 52–62). IEEE. Gu, Y., Zhu, T., He, T. (2009). Esc: Energy synchronized communication in sustainable sensor networks. In 17th IEEE international conference on network protocols, ICNP 2009 (pp. 52–62). IEEE.
55.
go back to reference Merlin, C. J., & Heinzelman, W. B. (2010). Duty cycle control for low-power-listening mac protocols. IEEE Transactions on Mobile Computing, 9(11), 1508–1521.CrossRef Merlin, C. J., & Heinzelman, W. B. (2010). Duty cycle control for low-power-listening mac protocols. IEEE Transactions on Mobile Computing, 9(11), 1508–1521.CrossRef
56.
go back to reference Tadayon, N., Khoshroo, S., Askari, E., Wang, H., & Michel, H. (2013). Power management in smac-based energy-harvesting wireless sensor networks using queuing analysis. Journal of Network and Computer Applications, 36(3), 1008–1017.CrossRef Tadayon, N., Khoshroo, S., Askari, E., Wang, H., & Michel, H. (2013). Power management in smac-based energy-harvesting wireless sensor networks using queuing analysis. Journal of Network and Computer Applications, 36(3), 1008–1017.CrossRef
57.
go back to reference Valera, A. C., Soh, W.-S., & Tan, H.-P. (2013). Energy-neutral scheduling and forwarding in environmentally-powered wireless sensor networks. Ad Hoc Networks, 11(3), 1202–1220.CrossRef Valera, A. C., Soh, W.-S., & Tan, H.-P. (2013). Energy-neutral scheduling and forwarding in environmentally-powered wireless sensor networks. Ad Hoc Networks, 11(3), 1202–1220.CrossRef
58.
go back to reference Peng, S., & Low, C. (2014). Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Networks, 13, 351–367.CrossRef Peng, S., & Low, C. (2014). Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Networks, 13, 351–367.CrossRef
59.
go back to reference Valera, A. C., Soh, W.-S., & Tan, H.-P. (2017). Enabling sustainable bulk transfer in environmentally-powered wireless sensor networks. Ad Hoc Networks, 54, 85–98.CrossRef Valera, A. C., Soh, W.-S., & Tan, H.-P. (2017). Enabling sustainable bulk transfer in environmentally-powered wireless sensor networks. Ad Hoc Networks, 54, 85–98.CrossRef
60.
go back to reference Quinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning (pp. 236–243). Quinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning (pp. 236–243).
61.
go back to reference Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef
Metadata
Title
Machine learning based optimal renewable energy allocation in sustained wireless sensor networks
Authors
Amandeep Sharma
Ajay Kakkar
Publication date
04-01-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-01929-w

Other articles of this Issue 7/2019

Wireless Networks 7/2019 Go to the issue