Skip to main content
Top

2024 | OriginalPaper | Chapter

Machine Learning-Based QSAR Classifications for PIM Kinases Inhibition Prediction: Towards the Neoplastic in Silico Drug Design

Authors : Mohamed Oussama Mousser, Khairedine Kraim, Fouad Chafaa, Mohamed Brahimi

Published in: Advancements in Architectural, Engineering, and Construction Research and Practice

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Promoting the use of strong AI tools in computational drug designing is a promising way to avoid early-stage failures of cancer drug discovery process. We build an inhibition targeted machine learning classifications, aiming to model the structure/activity relationships for PIM 1/2/3 protein kinases inhibitors, using different decision trees-based algorithms, starting from the data curation and analysis of previous experimental measurements. The therapeutic targets being studied are a family of serine/threonine protein kinases directly involved in various cellular processes, they have been implicated in cancer progression and identified as highly oncogenic. The constructed models showed Random Forest (RF) performances slightly better than XGBoost for the PIM 1 (+1% of difference in the accuracy scores), and XGBoost significant robustness for the PIM 2 and 3 datasets (+2% and + 4%, respectively), whereas the SVM algorithms were found to present a poor predictive ability from our datasets, either with a linear or a radial basis functional kernel. The benchmarking led to the selection of the strongest models: 85% of prediction accuracy for PIM 1 and PIM 2 datasets and 82% for the PIM 3 dataset. Data modeling along with technical methodology are discussed in details and the predictive strength of both RF and XGBoost algorithms on these data types is examined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdulrahman FG, Sabour R, Abd El-Gilil SM, Mehany AB, Taha EA (2023) Design, synthesis, biological evaluation and molecular docking study of new pyrazolo [1, 5-a] pyrimidines as pim kinase inhibitors and apoptosis inducers. J Mol Struct, 136811 Abdulrahman FG, Sabour R, Abd El-Gilil SM, Mehany AB, Taha EA (2023) Design, synthesis, biological evaluation and molecular docking study of new pyrazolo [1, 5-a] pyrimidines as pim kinase inhibitors and apoptosis inducers. J Mol Struct, 136811
go back to reference Almukadi H, Jadkarim GA, Mohammed A, Almansouri M, Sultana N, Shaik NA, Banaganapalli B (2023) Combining machine learning and structure-based approaches to develop oncogene pim kinase inhibitors. Front Chem 11:1137444CrossRef Almukadi H, Jadkarim GA, Mohammed A, Almansouri M, Sultana N, Shaik NA, Banaganapalli B (2023) Combining machine learning and structure-based approaches to develop oncogene pim kinase inhibitors. Front Chem 11:1137444CrossRef
go back to reference Aouidate A, Ghaleb A, Ghamali M, Chtita S, Choukrad M, Sbai A, Lakhlifi T (2017) Qsar studies on pim1 and pim2 inhibitors using statistical methods: a rustic strategy to screen for 5-(1h-indol-5-yl)-1, 3, 4-thiadiazol analogues and predict their pim inhibitory activity. Chem Cent J 11:1–10CrossRef Aouidate A, Ghaleb A, Ghamali M, Chtita S, Choukrad M, Sbai A, Lakhlifi T (2017) Qsar studies on pim1 and pim2 inhibitors using statistical methods: a rustic strategy to screen for 5-(1h-indol-5-yl)-1, 3, 4-thiadiazol analogues and predict their pim inhibitory activity. Chem Cent J 11:1–10CrossRef
go back to reference Arrouchi H, Lakhlili W, Ibrahimi A (2019) A review on pim kinases in tumors. Bioinformation 15(1):40CrossRef Arrouchi H, Lakhlili W, Ibrahimi A (2019) A review on pim kinases in tumors. Bioinformation 15(1):40CrossRef
go back to reference Asati V, Agarwal S, Mishra M, Das R, Kashaw SK (2020) Structural prediction of novel pyrazolopyrimidine derivatives against pim-1 kinase: In-silico drug design studies. J Mol Struct 1217:128375CrossRef Asati V, Agarwal S, Mishra M, Das R, Kashaw SK (2020) Structural prediction of novel pyrazolopyrimidine derivatives against pim-1 kinase: In-silico drug design studies. J Mol Struct 1217:128375CrossRef
go back to reference Barnett A, Ding S, Murray C, Chamberlain M, Plummer S, Evans T, Wolf C (2010) Anti-tumor activity of cxr1002, a novel anti-cancer clinical phase compound that induces er stress and inhibits pim kinases: human tumor xenograft efficacy and in vitro mode of action. EJC Suppl 8(7):45–46CrossRef Barnett A, Ding S, Murray C, Chamberlain M, Plummer S, Evans T, Wolf C (2010) Anti-tumor activity of cxr1002, a novel anti-cancer clinical phase compound that induces er stress and inhibits pim kinases: human tumor xenograft efficacy and in vitro mode of action. EJC Suppl 8(7):45–46CrossRef
go back to reference Benesty J, Chen J, Huang Y (2008) On the importance of the pearson correlation coefficient in noise reduction. IEEE Trans Audio Speech Lang Process 16(4):757–765CrossRef Benesty J, Chen J, Huang Y (2008) On the importance of the pearson correlation coefficient in noise reduction. IEEE Trans Audio Speech Lang Process 16(4):757–765CrossRef
go back to reference Bento AP, Hersey A, Felix E, Landrum G, Gaulton A, Atkinson F, Leach AR (2020) An open´ source chemical structure curation pipeline using rdkit. J Cheminformatics 12:1–16CrossRef Bento AP, Hersey A, Felix E, Landrum G, Gaulton A, Atkinson F, Leach AR (2020) An open´ source chemical structure curation pipeline using rdkit. J Cheminformatics 12:1–16CrossRef
go back to reference Bisong E, Bisong E (2019) Introduction to scikit-learn. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, 215–229 Bisong E, Bisong E (2019) Introduction to scikit-learn. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, 215–229
go back to reference Chen C, Zhang P, Zhang H, Dai J, Yi Y, Zhang H, Zhang Y (2020) Deep learning on computationalresource-limited platforms: a survey. Mob Inf Syst 2020:1–19 Chen C, Zhang P, Zhang H, Dai J, Yi Y, Zhang H, Zhang Y (2020) Deep learning on computationalresource-limited platforms: a survey. Mob Inf Syst 2020:1–19
go back to reference Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) Qsar modeling: where have you been? where are you going to? J Med Chem 57(12):4977–5010CrossRef Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) Qsar modeling: where have you been? where are you going to? J Med Chem 57(12):4977–5010CrossRef
go back to reference Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20(3):273–297 Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20(3):273–297
go back to reference Czerminski R, Yasri A, Hartsough D (2001) Use of support vector machine in pattern classification:´ Application to qsar studies. Quant Struct-Act Relat 20(3):227–240CrossRef Czerminski R, Yasri A, Hartsough D (2001) Use of support vector machine in pattern classification:´ Application to qsar studies. Quant Struct-Act Relat 20(3):227–240CrossRef
go back to reference Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure-´ activity relationships (qsar): a review. Comb Chem High Throughput Screening 9(3):213–228CrossRef Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure-´ activity relationships (qsar): a review. Comb Chem High Throughput Screening 9(3):213–228CrossRef
go back to reference Ho TK (1995). Random decision forests. In Proceedings of 3rd International Conference On Document Analysis and Recognition 1, pp 278–282 Ho TK (1995). Random decision forests. In Proceedings of 3rd International Conference On Document Analysis and Recognition 1, pp 278–282
go back to reference Justus D, Brennan J, Bonner S, McGough AS (2018) Predicting the computational cost of deep learning models. In 2018 IEEE International Conference on Big Data (Big Data) pp 3873–3882 Justus D, Brennan J, Bonner S, McGough AS (2018) Predicting the computational cost of deep learning models. In 2018 IEEE International Conference on Big Data (Big Data) pp 3873–3882
go back to reference Kursa MB, Jankowski A, Rudnicki WR (2010) Boruta–a system for feature selection. Fund Inform 101(4):271–285 Kursa MB, Jankowski A, Rudnicki WR (2010) Boruta–a system for feature selection. Fund Inform 101(4):271–285
go back to reference Le BT, Kumarasiri M, Adams JR, Yu M, Milne R, Sykes MJ, Wang S (2015) Targeting pim kinases for cancer treatment: opportunities and challenges. Future Med Chem 7(1):35–53CrossRef Le BT, Kumarasiri M, Adams JR, Yu M, Milne R, Sykes MJ, Wang S (2015) Targeting pim kinases for cancer treatment: opportunities and challenges. Future Med Chem 7(1):35–53CrossRef
go back to reference Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X (2019) Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods 166:4–21CrossRef Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X (2019) Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods 166:4–21CrossRef
go back to reference Liu Z, Han M, Ding K, Fu R (2020) The role of pim kinase in immunomodulation. Am J Cancer Res 10(12):4085 Liu Z, Han M, Ding K, Fu R (2020) The role of pim kinase in immunomodulation. Am J Cancer Res 10(12):4085
go back to reference Maney NJ, Lemos H, Barron-Millar B, Carey C, Herron I, Anderson AE, Pratt AG (2021) Pim kinases as therapeutic targets in early rheumatoid arthritis. Arthritis & Rheumatology 73(10):1820–1830CrossRef Maney NJ, Lemos H, Barron-Millar B, Carey C, Herron I, Anderson AE, Pratt AG (2021) Pim kinases as therapeutic targets in early rheumatoid arthritis. Arthritis & Rheumatology 73(10):1820–1830CrossRef
go back to reference Mantovani RG, Horvath T, Cerri R, Junior SB, Vanschoren J, de Carvalho ACP. d. LF (2018) An´ empirical study on hyperparameter tuning of decision trees. arXiv preprint arXiv:1812.02207 Mantovani RG, Horvath T, Cerri R, Junior SB, Vanschoren J, de Carvalho ACP. d. LF (2018) An´ empirical study on hyperparameter tuning of decision trees. arXiv preprint arXiv:​1812.​02207
go back to reference McKinney W (2010) Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference 445, pp 51–56 McKinney W (2010) Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference 445, pp 51–56
go back to reference Medina-Franco JL, Maggiora GM (2013) Molecular similarity analysis. Chemoinformatics for drug discovery, 343–399 Medina-Franco JL, Maggiora GM (2013) Molecular similarity analysis. Chemoinformatics for drug discovery, 343–399
go back to reference Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E et al (2019) Chembl: towards´ direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940CrossRef Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E et al (2019) Chembl: towards´ direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940CrossRef
go back to reference Paper D, Paper D (2020) Scikit-learn classifier tuning from simple training sets. Hands-on Scikit-Learn for machine learning applications: data science fundamentals with python, 137–163 Paper D, Paper D (2020) Scikit-learn classifier tuning from simple training sets. Hands-on Scikit-Learn for machine learning applications: data science fundamentals with python, 137–163
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Duchesnay E (2011) Scikitlearn: machine learning in python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Duchesnay E (2011) Scikitlearn: machine learning in python. J Mach Learn Res 12:2825–2830
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) Ucsf chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) Ucsf chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRef
go back to reference Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human pim-1 kinase. J Biol Chem 280(7):6130–6137CrossRef Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human pim-1 kinase. J Biol Chem 280(7):6130–6137CrossRef
go back to reference Salimi A, Lim JH, Jang JH, Lee JY (2022) The use of machine learning modeling, virtual screening, molecular docking, and molecular dynamics simulations to identify potential vegfr2 kinase inhibitors. Sci Rep 12(1):18825CrossRef Salimi A, Lim JH, Jang JH, Lee JY (2022) The use of machine learning modeling, virtual screening, molecular docking, and molecular dynamics simulations to identify potential vegfr2 kinase inhibitors. Sci Rep 12(1):18825CrossRef
go back to reference Salman M, Ahmed S, Nandi S (2019) Qsar and anticancer drug design on benzothienopyrimidinones as promising pim kinase inhibitors utilizing structural descriptors. Int J Quant Struct-Prop RelatShips (IJQSPR) 4(2):82–99 Salman M, Ahmed S, Nandi S (2019) Qsar and anticancer drug design on benzothienopyrimidinones as promising pim kinase inhibitors utilizing structural descriptors. Int J Quant Struct-Prop RelatShips (IJQSPR) 4(2):82–99
go back to reference Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM (2016) Extreme gradient boosting as a method for quantitative structure–activity relationships. J Chem Inf Model 56(12):2353–2360CrossRef Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM (2016) Extreme gradient boosting as a method for quantitative structure–activity relationships. J Chem Inf Model 56(12):2353–2360CrossRef
go back to reference Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni, S (2020). Support vector machine versus random forest for remote sensing image classification: A metaanalysis and systematic review. IEEE J Sel Top Appl Earth Obs Remote Sens, 13, 6308–6325 Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni, S (2020). Support vector machine versus random forest for remote sensing image classification: A metaanalysis and systematic review. IEEE J Sel Top Appl Earth Obs Remote Sens, 13, 6308–6325
go back to reference Singh D, Singh B (2020) Investigating the impact of data normalization on classification performance. Appl Soft Comput 97:105524CrossRef Singh D, Singh B (2020) Investigating the impact of data normalization on classification performance. Appl Soft Comput 97:105524CrossRef
go back to reference Singh H, Singh S, Singla D, Agarwal SM, Raghava GP (2015) Qsar based model for discriminating egfr inhibitors and non-inhibitors using random forest. Biol Direct 10(1):1–12CrossRef Singh H, Singh S, Singla D, Agarwal SM, Raghava GP (2015) Qsar based model for discriminating egfr inhibitors and non-inhibitors using random forest. Biol Direct 10(1):1–12CrossRef
go back to reference Svetnik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q (2005) Boosting: An ensemble learning tool for compound classification and qsar modeling. J Chem Inf Model 45(3):786–799CrossRef Svetnik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q (2005) Boosting: An ensemble learning tool for compound classification and qsar modeling. J Chem Inf Model 45(3):786–799CrossRef
go back to reference Tropsha A (2010) Best practices for qsar model development, validation, and exploitation. Mol Inf 29(6–7):476–488CrossRef Tropsha A (2010) Best practices for qsar model development, validation, and exploitation. Mol Inf 29(6–7):476–488CrossRef
go back to reference Vignaux PA, Minerali E, Foil DH, Puhl AC, Ekins S (2020) Machine learning for discovery of gsk3β inhibitors. ACS Omega 5(41):26551–26561CrossRef Vignaux PA, Minerali E, Foil DH, Puhl AC, Ekins S (2020) Machine learning for discovery of gsk3β inhibitors. ACS Omega 5(41):26551–26561CrossRef
go back to reference Walhekar V, Bagul C, Kumar D, Achaiah G, Muthal A, Kulkarni R, Basavarju M (2022) Computational modelling strategies in exploring triazolopyridazine pim1 kinase inhibitors as anticancer agents. Anti-Cancer Agents Med Chem Walhekar V, Bagul C, Kumar D, Achaiah G, Muthal A, Kulkarni R, Basavarju M (2022) Computational modelling strategies in exploring triazolopyridazine pim1 kinase inhibitors as anticancer agents. Anti-Cancer Agents Med Chem
go back to reference Wang H-L, Andrews KL, Booker SK, Canon J, Cee VJ, Chavez F Jr et al (2019) Discovery of (r)-8-(6-methyl-4-oxo-1, 4, 5, 6-tetrahydropyrrolo [3, 4-b] pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1methylcyclopropyl) amino) quinazolin-4 (3 h)-one, a potent and selective pim-1/2 kinase inhibitor for hematological malignancies. J Med Chem 62(3):1523–1540CrossRef Wang H-L, Andrews KL, Booker SK, Canon J, Cee VJ, Chavez F Jr et al (2019) Discovery of (r)-8-(6-methyl-4-oxo-1, 4, 5, 6-tetrahydropyrrolo [3, 4-b] pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1methylcyclopropyl) amino) quinazolin-4 (3 h)-one, a potent and selective pim-1/2 kinase inhibitor for hematological malignancies. J Med Chem 62(3):1523–1540CrossRef
go back to reference Wu Z, Zhu M, Kang Y, Leung EL-H, Lei T, Shen C, Hou T (2021) Do we need different machine learning algorithms for qsar modeling? a comprehensive assessment of 16 machine learning algorithms on 14 qsar data sets. Briefings in bioinformatics, 22(4), bbaa321 Wu Z, Zhu M, Kang Y, Leung EL-H, Lei T, Shen C, Hou T (2021) Do we need different machine learning algorithms for qsar modeling? a comprehensive assessment of 16 machine learning algorithms on 14 qsar data sets. Briefings in bioinformatics, 22(4), bbaa321
go back to reference Yap CW (2011) Padel-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474CrossRef Yap CW (2011) Padel-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474CrossRef
go back to reference Zeng G (2020) On the confusion matrix in credit scoring and its analytical properties. Commun Stat-Theory Methods 49(9):2080–2093CrossRef Zeng G (2020) On the confusion matrix in credit scoring and its analytical properties. Commun Stat-Theory Methods 49(9):2080–2093CrossRef
Metadata
Title
Machine Learning-Based QSAR Classifications for PIM Kinases Inhibition Prediction: Towards the Neoplastic in Silico Drug Design
Authors
Mohamed Oussama Mousser
Khairedine Kraim
Fouad Chafaa
Mohamed Brahimi
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59329-1_8