Skip to main content
Top

2018 | OriginalPaper | Chapter

Machine Learning for Muon Imaging

Authors : Guangliang Yang, David Ireland, Ralf Kaiser, David Mahon

Published in: Advances in Brain Inspired Cognitive Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Muon imaging is a new imaging technique which can be used to image large bulky objects, especially objects with heavy shielding where other techniques like X-ray CT scanning will often fail. This is due to the fact that high energy cosmic rays have a very high penetrative power and can easily penetrate hundreds of meters of rock. Muon imaging is essentially an inverse problem. There are two popular forms of muon imaging techniques - absorption muon imaging based on the attenuation of muons in matter and multiple scattering muon imaging based on the multiple scattering effect of muons. Muon imaging can be used in many areas, ranging from volcanology and searching for secret cavities in pyramids over border monitoring for special nuclear materials to nuclear safeguards applications for monitoring the spent fuel casks. Due to the lack of man-made muon sources, both of the muon imaging techniques rely on cosmic ray muons. One important shortcoming of comic ray muons are the very low intensities. In order to get high image resolutions, very long exposure times are needed. In this paper, we will study how machine learning techniques can be used to improve the muon imaging techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference George, E.P.: Cosmic rays measure overburden of tunnel. Commonwealth Eng. 455–457 (1955) George, E.P.: Cosmic rays measure overburden of tunnel. Commonwealth Eng. 455–457 (1955)
2.
go back to reference Alvarez, L.W., et al.: Search for hidden chambers in the pyramids using cosmic rays. Science 167, 832–839 (1970)CrossRef Alvarez, L.W., et al.: Search for hidden chambers in the pyramids using cosmic rays. Science 167, 832–839 (1970)CrossRef
3.
go back to reference Nagamine, K.: Geo-tomographic observation of inner structure of volcano with cosmic-ray muons. J. Geogr. 104, 998–1007 (1995)CrossRef Nagamine, K.: Geo-tomographic observation of inner structure of volcano with cosmic-ray muons. J. Geogr. 104, 998–1007 (1995)CrossRef
4.
go back to reference Tanaka, H., Nagamine, K., Kawamura, N., Nakamura, S.N., Ishida, K., Shimomura, K.: Development of the cosmic-ray muon detection system for probing internal-structure of a volcano. Hyperfine Interact. 138, 521–526 (2001)CrossRef Tanaka, H., Nagamine, K., Kawamura, N., Nakamura, S.N., Ishida, K., Shimomura, K.: Development of the cosmic-ray muon detection system for probing internal-structure of a volcano. Hyperfine Interact. 138, 521–526 (2001)CrossRef
5.
go back to reference Tanaka, H., Nagamine, K., Nakamura, S.N., Ishida, K.: Radiographic measurements of the internal structure of Mt. West Iwate with near horizontal cosmic ray muons and future developments. Nucl. Instrum. Methods A 555, 164–172 (2005)CrossRef Tanaka, H., Nagamine, K., Nakamura, S.N., Ishida, K.: Radiographic measurements of the internal structure of Mt. West Iwate with near horizontal cosmic ray muons and future developments. Nucl. Instrum. Methods A 555, 164–172 (2005)CrossRef
6.
go back to reference Carbone, D., Gibert, D., Marteau, J., Diament, M., Zuccarello, L., Galichet, E.: An experiment of muon radiography at Mt. Etna (Italy). Geophys. J. Int. 196, 633–643 (2014)CrossRef Carbone, D., Gibert, D., Marteau, J., Diament, M., Zuccarello, L., Galichet, E.: An experiment of muon radiography at Mt. Etna (Italy). Geophys. J. Int. 196, 633–643 (2014)CrossRef
9.
go back to reference Klinger, J., et al.: Simulation of muon radiography for monitoring CO2 stored in a geological reservoir. Int. J. Greenhouse Gas Control 42, 644–654 (2015)CrossRef Klinger, J., et al.: Simulation of muon radiography for monitoring CO2 stored in a geological reservoir. Int. J. Greenhouse Gas Control 42, 644–654 (2015)CrossRef
10.
go back to reference Morishima, K., et al.: Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017)CrossRef Morishima, K., et al.: Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017)CrossRef
12.
go back to reference Borozdin, K.N., et al.: Surveillance: radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003)CrossRef Borozdin, K.N., et al.: Surveillance: radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003)CrossRef
13.
go back to reference Schultz, L.: Cosmic ray muon radiography, Ph.D. dissertation, Portland State University, Portland, OR (2003) Schultz, L.: Cosmic ray muon radiography, Ph.D. dissertation, Portland State University, Portland, OR (2003)
14.
go back to reference Schultz, L., et al.: Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods A 519, 687 (2004)CrossRef Schultz, L., et al.: Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods A 519, 687 (2004)CrossRef
15.
go back to reference Clarkson, A., et al.: The design and performance of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers. Nucl. Instrum. Methods A 745, 138 (2014)CrossRef Clarkson, A., et al.: The design and performance of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers. Nucl. Instrum. Methods A 745, 138 (2014)CrossRef
16.
go back to reference Mahon, D.F., et al.: A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers. Nucl. Instrum. Methods A 732, 408 (2013)CrossRef Mahon, D.F., et al.: A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers. Nucl. Instrum. Methods A 732, 408 (2013)CrossRef
17.
go back to reference Jonkmans, G., et al.: Nuclear waste imaging and spent fuel verification by muon tomography. Ann. Nucl. Energy 53, 267–273 (2013)CrossRef Jonkmans, G., et al.: Nuclear waste imaging and spent fuel verification by muon tomography. Ann. Nucl. Energy 53, 267–273 (2013)CrossRef
18.
go back to reference Durham, J.M., et al.: Verification of spent nuclear fuel in sealed dry storage casks via measurements of cosmic-ray muon scattering. Phys. Rev. Appl. 9, 044013 (2018)CrossRef Durham, J.M., et al.: Verification of spent nuclear fuel in sealed dry storage casks via measurements of cosmic-ray muon scattering. Phys. Rev. Appl. 9, 044013 (2018)CrossRef
19.
go back to reference Miyadera, H., et al.: Imaging Fukushima Daiichi reactors with muons. AIP Adv. 3, 052133 (2013)CrossRef Miyadera, H., et al.: Imaging Fukushima Daiichi reactors with muons. AIP Adv. 3, 052133 (2013)CrossRef
20.
go back to reference Borozdin, K., et al.: Cosmic ray radiography of the damaged cores of the Fukushima reactors. Phys. Rev. Lett. 109, 152501 (2012)CrossRef Borozdin, K., et al.: Cosmic ray radiography of the damaged cores of the Fukushima reactors. Phys. Rev. Lett. 109, 152501 (2012)CrossRef
22.
go back to reference Nakamura, K., et al.: Particle data group. J. Phys. G 37, 075021 (2010). (2011 partial update for the 2012 edition)CrossRef Nakamura, K., et al.: Particle data group. J. Phys. G 37, 075021 (2010). (2011 partial update for the 2012 edition)CrossRef
23.
go back to reference Molière, G.: Theorie der Streuung schneller geladenen Teilchen II Mehrfach- und Vielfachstreuung. Z. Naturforschg. 3A, 78–97 (1948) Molière, G.: Theorie der Streuung schneller geladenen Teilchen II Mehrfach- und Vielfachstreuung. Z. Naturforschg. 3A, 78–97 (1948)
24.
go back to reference Rossi, B.: High Energy Particles. Prentice-Hall, Englewood Cliffs (1952) Rossi, B.: High Energy Particles. Prentice-Hall, Englewood Cliffs (1952)
26.
go back to reference Schultz, L., et al.: Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16, 1985 (2007)MathSciNetCrossRef Schultz, L., et al.: Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16, 1985 (2007)MathSciNetCrossRef
27.
go back to reference Fessler, J.: Analytical tomographic image reconstruction methods, Chap. 3, 19 November 2009 Fessler, J.: Analytical tomographic image reconstruction methods, Chap. 3, 19 November 2009
28.
go back to reference Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8, 2575 (2018)CrossRef Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8, 2575 (2018)CrossRef
29.
go back to reference Morris, C.L., et al.: Tomographic imaging with cosmic ray muons. Sci. Glob. Secur. 16, 37–53 (2008)CrossRef Morris, C.L., et al.: Tomographic imaging with cosmic ray muons. Sci. Glob. Secur. 16, 37–53 (2008)CrossRef
30.
go back to reference Stocki, T.J., et al.: Machine learning for the cosmic ray inspection and passive tomography project (CRIPT). In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, pp. 91–94 (2012) Stocki, T.J., et al.: Machine learning for the cosmic ray inspection and passive tomography project (CRIPT). In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, pp. 91–94 (2012)
31.
go back to reference Agostinelli, S., et al.: GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)CrossRef Agostinelli, S., et al.: GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)CrossRef
32.
go back to reference Chatzidakis, S., et al.: A Geant4 MATLAB muon generator for Monte-Carlo simulations. Internal Report (2015) Chatzidakis, S., et al.: A Geant4 MATLAB muon generator for Monte-Carlo simulations. Internal Report (2015)
33.
go back to reference McKinnon, M.A., et al.: The MC-10 PWR spent-fuel storage cask: testing and analysis. Electric Power Research Institute Report NP-5268 (1987) McKinnon, M.A., et al.: The MC-10 PWR spent-fuel storage cask: testing and analysis. Electric Power Research Institute Report NP-5268 (1987)
34.
go back to reference O’Donnell, G.M.: A New Comparative Analysis of LWR Fuel Designs, NUREG-1754. U.S. Nuclear Regulatory Commission, Rockville (2001) O’Donnell, G.M.: A New Comparative Analysis of LWR Fuel Designs, NUREG-1754. U.S. Nuclear Regulatory Commission, Rockville (2001)
35.
go back to reference Jiang, J.: Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 34(8), 617–631 (2010)CrossRef Jiang, J.: Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 34(8), 617–631 (2010)CrossRef
36.
go back to reference Ren, J.: ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl.-Based Syst. 26, 144–153 (2012)CrossRef Ren, J.: ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl.-Based Syst. 26, 144–153 (2012)CrossRef
37.
go back to reference Ren, J.: Effective recognition of MCCs in mammograms using an improved neural classifier. Eng. Appl. Artif. Intell. 24(4), 638–645 (2011)CrossRef Ren, J.: Effective recognition of MCCs in mammograms using an improved neural classifier. Eng. Appl. Artif. Intell. 24(4), 638–645 (2011)CrossRef
Metadata
Title
Machine Learning for Muon Imaging
Authors
Guangliang Yang
David Ireland
Ralf Kaiser
David Mahon
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00563-4_79

Premium Partner