Skip to main content
Top

2023 | OriginalPaper | Chapter

16. Machine Learning in Online Advertising Research: A Systematic Mapping Study

Authors : María Cueto González, José Parreño Fernández, David de la Fuente García, Alberto Gómez Gómez

Published in: Industry 4.0: The Power of Data

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to consolidate a study framework on the academic production about digital marketing and artificial intelligence, this paper aims to provide an overview of the state of research on this a specific topic and to decide on the axes where to dig by using a systematic mapping study (SMS) methodology. As extended scope research areas both fields require to become less general to face a systematic literature review. For this reason, this study introduces a previous phase in which an initial systematic mapping study is performed combined with a subsequent text analysis to obtain the most frequent bigrams in the literature and to narrow down more specific and interconnected study areas. As a result, online advertising and machine learning were identified as parameters to perform a final complete systematic mapping study. The results of this paper allow a framework for all academic production about online advertising and machine learning studied together, by providing a review of this corpus, analyzing annual production rate, sources and cites received.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Broder AZ, Fontoura M, Gabrilovich E, Joshi A, Josifovski V, Zhang T (2007) Robust classification of rare queries using web knowledge. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, SIGIR’07, 231–238. https://doi.org/10.1145/1277741.1277783 Broder AZ, Fontoura M, Gabrilovich E, Joshi A, Josifovski V, Zhang T (2007) Robust classification of rare queries using web knowledge. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, SIGIR’07, 231–238. https://​doi.​org/​10.​1145/​1277741.​1277783
7.
11.
go back to reference Mcmahan HB, Holt G, Sculley D, Young M, Ebner D, Grady J, Nie L, Phillips T, Davydov E, Golovin D, Chikkerur S, Liu D, Wattenberg M, Hrafnkelsson AM, Boulos T, Kubica J (2013) Ad click prediction: a view from the trenches Mcmahan HB, Holt G, Sculley D, Young M, Ebner D, Grady J, Nie L, Phillips T, Davydov E, Golovin D, Chikkerur S, Liu D, Wattenberg M, Hrafnkelsson AM, Boulos T, Kubica J (2013) Ad click prediction: a view from the trenches
17.
go back to reference Tolomei G, Silvestri F, Haines A, Lalmas M (2017) Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, Part F129685, 465–474.https://doi.org/10.1145/3097983.3098039 Tolomei G, Silvestri F, Haines A, Lalmas M (2017) Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, Part F129685, 465–474.https://​doi.​org/​10.​1145/​3097983.​3098039
18.
go back to reference Edizel B, Mantrach A, Bai X (2017) Deep character-level click-through rate prediction for sponsored search. In: SIGIR 2017—proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, 305–314. https://doi.org/10.1145/3077136.3080811 Edizel B, Mantrach A, Bai X (2017) Deep character-level click-through rate prediction for sponsored search. In: SIGIR 2017—proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, 305–314. https://​doi.​org/​10.​1145/​3077136.​3080811
23.
go back to reference Chyrun L, Kowalska-Styczen A, Burov Y, Berko A, Vasevych A, Pelekh I, Ryshkovets Y (2019) Heterogeneous data with agreed content aggregation system development. CEUR Works Proc 2386:35–54 Chyrun L, Kowalska-Styczen A, Burov Y, Berko A, Vasevych A, Pelekh I, Ryshkovets Y (2019) Heterogeneous data with agreed content aggregation system development. CEUR Works Proc 2386:35–54
34.
go back to reference Hajian S, Bonchi F, Castillo C (2016) Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 13–17 Aug 2016, 2125–2126. https://doi.org/10.1145/2939672.2945386 Hajian S, Bonchi F, Castillo C (2016) Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 13–17 Aug 2016, 2125–2126. https://​doi.​org/​10.​1145/​2939672.​2945386
36.
37.
go back to reference Eriksson B, Barford P, Sommers J, Nowak R (2010) A learning-based approach for IP geolocation. In: Passive and active measurement, proceedings Eriksson B, Barford P, Sommers J, Nowak R (2010) A learning-based approach for IP geolocation. In: Passive and active measurement, proceedings
38.
go back to reference Attenberg J, Provost F (2010) Why label when you can search? Alternatives to active learning for applying human resources to build classification models under extreme class imbalance. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 423–432.https://doi.org/10.1145/1835804.1835859 Attenberg J, Provost F (2010) Why label when you can search? Alternatives to active learning for applying human resources to build classification models under extreme class imbalance. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 423–432.https://​doi.​org/​10.​1145/​1835804.​1835859
40.
41.
42.
go back to reference Dalessandro B, Chen D, Raeder T, Perlich C, Han Williams M, Provost F (2014) Scalable hands-free transfer learning for online advertising. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 1573–1582.https://doi.org/10.1145/2623330.2623349 Dalessandro B, Chen D, Raeder T, Perlich C, Han Williams M, Provost F (2014) Scalable hands-free transfer learning for online advertising. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 1573–1582.https://​doi.​org/​10.​1145/​2623330.​2623349
Metadata
Title
Machine Learning in Online Advertising Research: A Systematic Mapping Study
Authors
María Cueto González
José Parreño Fernández
David de la Fuente García
Alberto Gómez Gómez
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-29382-5_16

Premium Partners