Skip to main content
Top

2025 | OriginalPaper | Chapter

Machine Learning Methods to Predict Resilient Moduli Behavior of Subgrade Soils

Authors : Sopharith Chou, Nripojyoti Biswas, Anand J. Puppala

Published in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 1

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to limited budgets and complex testing procedures to determine resilient modulus (MR), engineers often rely on correlations between modulus and other engineering properties such as unconfined compressive strength (UCS). However, a majority of such correlations are based on linear regression, which can often lead to under or over-prediction of the correlated values. With the advancement in computing techniques, it has become convenient to understand and predict the behavior of engineering materials using optimization techniques. In this study, two machine learning (ML) techniques, including Artificial Neural Network (ANN) and Random Forest (RF), were used to predict the MR values from UCS data. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and coefficient of determination (R) were computed to assess the effectiveness of the models. The statistical analysis of the testing sets indicated that the RF model achieved a goodness of fit value of 0.97, an MAE of 12.7 MPa, and an RMSE of 18.5 MPa. Alternatively, the ANN model indicated the corresponding goodness of fit value of 0.71 with an MAE of 44.3 MPa and an RMSE of 60.9 MPa. Furthermore, among various contributing factors, UCS was identified as the primary factor in predicting MR values for both models. Based on these findings, the RF model outperformed the ANN model in predicting unknown data within the examined parameter ranges and provides fitting parameters depending on the nature of the datasets, which avoids the overfitting effect. Therefore, this study demonstrates a progressive understanding of the potential use of the advanced computing tool to obtain more accurate resilient modulus values from the strength data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Biswas N, Puppala AJ, Chakraborty S (2024) Experimental studies and sustainability assessments of quarry dust for chemical treatment of expansive soils. Geotechnical Testing Journal 47(1) Biswas N, Puppala AJ, Chakraborty S (2024) Experimental studies and sustainability assessments of quarry dust for chemical treatment of expansive soils. Geotechnical Testing Journal 47(1)
4.
go back to reference Giroud J-P, Noiray L (1981) Geotextile-reinforced unpaved road design. J Geotech Eng Div 107(9):1233–1254CrossRef Giroud J-P, Noiray L (1981) Geotextile-reinforced unpaved road design. J Geotech Eng Div 107(9):1233–1254CrossRef
6.
go back to reference AASHTO (2004) Guide for mechanistic-empirical design of new and rehabilitated pavement structures-NCHRP project 1–37A final report AASHTO (2004) Guide for mechanistic-empirical design of new and rehabilitated pavement structures-NCHRP project 1–37A final report
7.
go back to reference Puppala AJ (2008) Estimating stiffness of subgrade and unbound materials for pavement design, vol 382. Transportation Research Board Puppala AJ (2008) Estimating stiffness of subgrade and unbound materials for pavement design, vol 382. Transportation Research Board
9.
go back to reference Hossain MS, Kim WS (2014) Estimation of subgrade resilient modulus using the unconfined compression test. Virginia Center for Transportation Innovation and Research Hossain MS, Kim WS (2014) Estimation of subgrade resilient modulus using the unconfined compression test. Virginia Center for Transportation Innovation and Research
10.
go back to reference Khatti J, Grover K (2022) A study of relationship among correlation coefficient, performance, and overfitting using regression analysis. Int J Sci Eng Res 13:1074–1085 Khatti J, Grover K (2022) A study of relationship among correlation coefficient, performance, and overfitting using regression analysis. Int J Sci Eng Res 13:1074–1085
13.
go back to reference Pichler M, Hartig F (2023) Machine learning and deep learning—a review for ecologists. Methods Ecol Evol 14(4):994–1016CrossRef Pichler M, Hartig F (2023) Machine learning and deep learning—a review for ecologists. Methods Ecol Evol 14(4):994–1016CrossRef
15.
go back to reference Lendo-Siwicka M, Zabłocka K, Soból E, Markiewicz A, Wrzesiński G (2023) Application of an Artificial Neural Network (ANN) model to determine the value of the damping ratio (D) of clay soils. Applied Sciences (Switzerland) 13(10). https://doi.org/10.3390/app13106224 Lendo-Siwicka M, Zabłocka K, Soból E, Markiewicz A, Wrzesiński G (2023) Application of an Artificial Neural Network (ANN) model to determine the value of the damping ratio (D) of clay soils. Applied Sciences (Switzerland) 13(10). https://​doi.​org/​10.​3390/​app13106224
18.
go back to reference Liu Y, Wang Y, Zhang J (2012) New machine learning algorithm: random forest. In: Information computing and applications: third international conference, ICICA 2012, Chengde, China. Proceedings 3. Springer, pp 246–252 Liu Y, Wang Y, Zhang J (2012) New machine learning algorithm: random forest. In: Information computing and applications: third international conference, ICICA 2012, Chengde, China. Proceedings 3. Springer, pp 246–252
19.
go back to reference Biau G, Fr GB (2012) Analysis of a random forests model Biau G, Fr GB (2012) Analysis of a random forests model
Metadata
Title
Machine Learning Methods to Predict Resilient Moduli Behavior of Subgrade Soils
Authors
Sopharith Chou
Nripojyoti Biswas
Anand J. Puppala
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8213-0_19