Skip to main content
Top

2024 | OriginalPaper | Chapter

Machine Learning Model for Traffic Prediction and Pattern Extraction in High-Speed Optical Networks

Authors : Saloni Rai, Amit Kumar Garg

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The tremendous development of network traffic causes the need to develop new network applications. Machine learning provides a pertinent platform to enhance currently used network optimization methods. The information about future traffic volumes is vital for the network operators. This paper presents an issue in traffic prediction and pattern extraction in high-speed optical networks and fills the literature gap by using a multiprocessor module from Python to enhance the efficiency of the work. An ML approach based on regression is designed. In the investigation, a dataset has been simulated and generated using the SNDLIB library and Python module GNPy estimation tool, which provides dynamic traffic matrices stated for various real network topologies and mimics real-world data. The performance of the proposed system is evaluated using different evaluation indexes like Mean Square Error (MSE), Mean Absolute Error (MAE), Max error (ME), and processing time based on the tuning of hyper-parameters. Outcomes of findings indicate better results compared to the existing technique. The findings confirm that proposed approach’s efficiency is better and seems to be a promising solution to the current network problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhong, Z., Hua, N., Tornatore, M., Li, J., Li, Y., Zheng, X., Mukherjee, B.: Provisioning short-term traffic fluctuations in elastic optical networks. IEEE/ACM Trans. Netw. 27(4), 1460–1473 (2019)CrossRef Zhong, Z., Hua, N., Tornatore, M., Li, J., Li, Y., Zheng, X., Mukherjee, B.: Provisioning short-term traffic fluctuations in elastic optical networks. IEEE/ACM Trans. Netw. 27(4), 1460–1473 (2019)CrossRef
2.
go back to reference Dias, M.P.I., Karunaratne, B.S., Wong, E.: Bayesian estimation and prediction-based dynamic bandwidth allocation algorithm for sleep/doze-mode passive optical networks. J. Lightwave Technol. 32(14), 2560–2568 (2014)CrossRef Dias, M.P.I., Karunaratne, B.S., Wong, E.: Bayesian estimation and prediction-based dynamic bandwidth allocation algorithm for sleep/doze-mode passive optical networks. J. Lightwave Technol. 32(14), 2560–2568 (2014)CrossRef
3.
go back to reference Chitra, K., Senkumar, M. R.: Hidden Markov model based lightpath establishment technique for improving QoS in optical WDM networks. In: Second International Conference on Current Trends In Engineering and Technology-ICCTET 2014, pp. 53–62. IEEE (2014) Chitra, K., Senkumar, M. R.: Hidden Markov model based lightpath establishment technique for improving QoS in optical WDM networks. In: Second International Conference on Current Trends In Engineering and Technology-ICCTET 2014, pp. 53–62. IEEE (2014)
4.
go back to reference de Araújo, D.R., Bastos-Filho, C.J., Martins-Filho, J.F.: Methodology to obtain a fast and accurate estimator for blocking probability of optical networks. J. Opt. Commun. Netw. 7(5), 380–391 (2015)CrossRef de Araújo, D.R., Bastos-Filho, C.J., Martins-Filho, J.F.: Methodology to obtain a fast and accurate estimator for blocking probability of optical networks. J. Opt. Commun. Netw. 7(5), 380–391 (2015)CrossRef
5.
go back to reference Filho, R.H., Maia, J.E.B.: Network traffic prediction using PCA and K-means. In: Proceedings of the 2010 IEEE/IFIP Network Operations and Management Symposium, NOMS 2010, Osaka, Japan, 19–23 April 2010, pp. 938–941 Filho, R.H., Maia, J.E.B.: Network traffic prediction using PCA and K-means. In: Proceedings of the 2010 IEEE/IFIP Network Operations and Management Symposium, NOMS 2010, Osaka, Japan, 19–23 April 2010, pp. 938–941
6.
go back to reference Rai, S., Garg, A.K.: Analysis of RWA in WDM optical networks using machine learning for traffic prediction and pattern extraction. J. Opt., 1–8 (2021) Rai, S., Garg, A.K.: Analysis of RWA in WDM optical networks using machine learning for traffic prediction and pattern extraction. J. Opt., 1–8 (2021)
7.
go back to reference Mata, J., de Miguel, I., Durán, R.J., Merayo, N., Singh, S.K., Jukan, A., Chamania, M.: Artificial intelligence (AI) methods in optical networks: a comprehensive survey. Opt. Switch. Netw. 28, 43–57 (2018)CrossRef Mata, J., de Miguel, I., Durán, R.J., Merayo, N., Singh, S.K., Jukan, A., Chamania, M.: Artificial intelligence (AI) methods in optical networks: a comprehensive survey. Opt. Switch. Netw. 28, 43–57 (2018)CrossRef
8.
go back to reference Lechowicz, P.: Regression-based fragmentation metric and fragmentation-aware algorithm in spectrally-spatially flexible optical networks. Comput. Commun. 175, 156–176 (2021)CrossRef Lechowicz, P.: Regression-based fragmentation metric and fragmentation-aware algorithm in spectrally-spatially flexible optical networks. Comput. Commun. 175, 156–176 (2021)CrossRef
9.
go back to reference Mata, J., De Miguel, I., Durán, R.J., Aguado, J.C., Merayo, N., Ruiz, L., Fernández, P., Lorenzo, R.M., Abril, E.J.: A SVM approach for lightpath QoT estimation in optical transport networks. In: Proceedings of the 2017 IEEE International Conference on Big Data, Big Data 2017, Boston, MA, USA, 11–14 December 2017; pp. 4795–4797 (2017) Mata, J., De Miguel, I., Durán, R.J., Aguado, J.C., Merayo, N., Ruiz, L., Fernández, P., Lorenzo, R.M., Abril, E.J.: A SVM approach for lightpath QoT estimation in optical transport networks. In: Proceedings of the 2017 IEEE International Conference on Big Data, Big Data 2017, Boston, MA, USA, 11–14 December 2017; pp. 4795–4797 (2017)
10.
go back to reference Vinchoff, C., Chung, N., Gordon, T., Lyford, L., Aibin, M.: Traffic prediction in optical networks using graph convolutional generative adversarial networks. In: Proceedings of the International Conference on Transparent Optical Networks, Bari, Italy, 19–23 July, pp. 3–6 (2020) Vinchoff, C., Chung, N., Gordon, T., Lyford, L., Aibin, M.: Traffic prediction in optical networks using graph convolutional generative adversarial networks. In: Proceedings of the International Conference on Transparent Optical Networks, Bari, Italy, 19–23 July, pp. 3–6 (2020)
11.
go back to reference Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., Tornatore, M.: An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 21, 1383–1408 (2019)CrossRef Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., Tornatore, M.: An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 21, 1383–1408 (2019)CrossRef
12.
go back to reference Cenedese, A., Tramarin, F., Vitturi, S.: An energy efficient Ethernet strategy based on traffic prediction and shaping. IEEE Trans. Commun. 65, 270–282 (2017) Cenedese, A., Tramarin, F., Vitturi, S.: An energy efficient Ethernet strategy based on traffic prediction and shaping. IEEE Trans. Commun. 65, 270–282 (2017)
13.
go back to reference Rzym, G., Boryło, P., Chołda, P.: A time-efficient shrinkage algorithm for the Fourier-based prediction enabling proactive optimisation in software-defined networks. Int. J. Commun. Syst. 33, e4448 (2020)CrossRef Rzym, G., Boryło, P., Chołda, P.: A time-efficient shrinkage algorithm for the Fourier-based prediction enabling proactive optimisation in software-defined networks. Int. J. Commun. Syst. 33, e4448 (2020)CrossRef
14.
go back to reference Zhong, Z., Hua, N., Yuan, Z., Li, Y., Zheng, X.: Routing without routing algorithms: An AI-based routing paradigm for multi-domain optical networks. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC).Optical Society of America: Washington, DC, USA (2019) Zhong, Z., Hua, N., Yuan, Z., Li, Y., Zheng, X.: Routing without routing algorithms: An AI-based routing paradigm for multi-domain optical networks. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC).Optical Society of America: Washington, DC, USA (2019)
15.
go back to reference Guan, L., Zhang, M., Wang, D.: Demonstration of AI-assisted energy-efficient traffic aggregation in 5G optical access network. In: 2020 Optical Fiber Communications Conference and Exhibition (OFC) , pp. 1–3. Optical Society of America, Washington, DC, USA (2020) Guan, L., Zhang, M., Wang, D.: Demonstration of AI-assisted energy-efficient traffic aggregation in 5G optical access network. In: 2020 Optical Fiber Communications Conference and Exhibition (OFC) , pp. 1–3. Optical Society of America, Washington, DC, USA (2020)
16.
go back to reference D’Amico, A., Straullu, S., Borraccini, G., London, E., Bottacchi, S., Piciaccia, S., Curri, V.: Enhancing lightpath QoT computation with machine learning in partially disaggregated optical networks. IEEE Open J. Commun. Soc. 2, 564–574 (2021)CrossRef D’Amico, A., Straullu, S., Borraccini, G., London, E., Bottacchi, S., Piciaccia, S., Curri, V.: Enhancing lightpath QoT computation with machine learning in partially disaggregated optical networks. IEEE Open J. Commun. Soc. 2, 564–574 (2021)CrossRef
17.
go back to reference Andreoletti, D., Rottondi, C., Bianco, A., Giordano, S.: A machine learning framework for scalable routing and wavelength assignment in large optical networks. In: Optical Fiber Communication Conference, pp. F2G-3. Optica Publishing Group (2021) Andreoletti, D., Rottondi, C., Bianco, A., Giordano, S.: A machine learning framework for scalable routing and wavelength assignment in large optical networks. In: Optical Fiber Communication Conference, pp. F2G-3. Optica Publishing Group (2021)
18.
go back to reference Aibin, M.: Traffic prediction based on machine learning for elastic optical networks. Opt. Switch. Netw. 30, 33–39 (2018)CrossRef Aibin, M.: Traffic prediction based on machine learning for elastic optical networks. Opt. Switch. Netw. 30, 33–39 (2018)CrossRef
19.
go back to reference Cheng, S., Xiao, D., Huang, A., Aibin, M.: Machine learning for regenerator placement based on the features of the optical network. In: 2019 21st International Conference on Transparent Optical Networks (ICTON), pp. 1–3. IEEE (2019) Cheng, S., Xiao, D., Huang, A., Aibin, M.: Machine learning for regenerator placement based on the features of the optical network. In: 2019 21st International Conference on Transparent Optical Networks (ICTON), pp. 1–3. IEEE (2019)
20.
go back to reference Locatelli, F., Christodoulopoulos, K., Fàbrega, J. M., Moreolo, M.S., Nadal, L., Spadaro, S.: Experimental demonstration of a machine learning-based in-band OSNR estimator from optical spectra. In: 2020 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–4. IEEE (2020) Locatelli, F., Christodoulopoulos, K., Fàbrega, J. M., Moreolo, M.S., Nadal, L., Spadaro, S.: Experimental demonstration of a machine learning-based in-band OSNR estimator from optical spectra. In: 2020 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–4. IEEE (2020)
21.
go back to reference Song, C., Zhang, M., Huang, X., Zhan, Y., Wang, D., Liu, M., Rong, Y.: Machine learning enabling traffic-aware dynamic slicing for 5G optical transport networks. In: CLEO: Science and Innovations, pp. JTu2A-44. Optica Publishing Group (2018) Song, C., Zhang, M., Huang, X., Zhan, Y., Wang, D., Liu, M., Rong, Y.: Machine learning enabling traffic-aware dynamic slicing for 5G optical transport networks. In: CLEO: Science and Innovations, pp. JTu2A-44. Optica Publishing Group (2018)
22.
go back to reference Samadi, P., Amar, D., Lepers, C., Lourdiane, M., Bergman, K.: Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks. In: 2017 European Conference on Optical Communication (ECOC), pp. 1–3. IEEE (2017) Samadi, P., Amar, D., Lepers, C., Lourdiane, M., Bergman, K.: Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks. In: 2017 European Conference on Optical Communication (ECOC), pp. 1–3. IEEE (2017)
23.
go back to reference Aibin, M., Chung, N., Gordon, T., Lyford, L., Vinchoff, C.: On short-and long-term traffic prediction in optical networks using machine learning. In: 2021 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6. IEEE (2021) Aibin, M., Chung, N., Gordon, T., Lyford, L., Vinchoff, C.: On short-and long-term traffic prediction in optical networks using machine learning. In: 2021 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6. IEEE (2021)
24.
go back to reference Szostak, D., Włodarczyk, A., Walkowiak, K.: Machine learning classification and regression approaches for optical network traffic prediction. Electronics 10(13), 1578 (2021)CrossRef Szostak, D., Włodarczyk, A., Walkowiak, K.: Machine learning classification and regression approaches for optical network traffic prediction. Electronics 10(13), 1578 (2021)CrossRef
25.
go back to reference Szostak, D., Walkowiak, K.: Application of machine learning algorithms for traffic forecasting in dynamic optical networks with service function chains. Found. Comput. Decis. Sci. 45(3), 217–232 (2020)CrossRef Szostak, D., Walkowiak, K.: Application of machine learning algorithms for traffic forecasting in dynamic optical networks with service function chains. Found. Comput. Decis. Sci. 45(3), 217–232 (2020)CrossRef
26.
go back to reference Alarcon-Aquino, V., Barria, J.A.: Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction. IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) 36(2), 208–220 (2006) Alarcon-Aquino, V., Barria, J.A.: Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction. IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) 36(2), 208–220 (2006)
27.
go back to reference Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: methods, evaluation, and applications. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 234–247 (2003) Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: methods, evaluation, and applications. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 234–247 (2003)
28.
go back to reference Knapińska, A., Lechowicz, P., Walkowiak, K.: Machine-learning based prediction of multiple types of network traffic. In: International Conference on Computational Science, pp. 122–136. Springer International Publishing, Cham (2021) Knapińska, A., Lechowicz, P., Walkowiak, K.: Machine-learning based prediction of multiple types of network traffic. In: International Conference on Computational Science, pp. 122–136. Springer International Publishing, Cham (2021)
29.
go back to reference Szostak, D., Walkowiak, K., Włodarczyk, A.: Short-term traffic forecasting in optical network using linear discriminant analysis machine learning classifier. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4. IEEE (2020) Szostak, D., Walkowiak, K., Włodarczyk, A.: Short-term traffic forecasting in optical network using linear discriminant analysis machine learning classifier. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4. IEEE (2020)
30.
go back to reference Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0—Survivable network design library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, 12–14 June 2007 Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0—Survivable network design library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, 12–14 June 2007
31.
go back to reference Jurkiewicz, P., Rzym, G., Borylo, P.: Flow length and size distributions in campus Internet traffic. Comput. Commun. 167, 15–30 (2021)CrossRef Jurkiewicz, P., Rzym, G., Borylo, P.: Flow length and size distributions in campus Internet traffic. Comput. Commun. 167, 15–30 (2021)CrossRef
32.
go back to reference Ba, S., Chatterjee, B.C., Oki, E.: Defragmentation scheme based on exchanging primary and backup paths in 1+1 path protected elastic optical networks. IEEE/ACM Trans. Netw. 25, 1717–1731 (2017)CrossRef Ba, S., Chatterjee, B.C., Oki, E.: Defragmentation scheme based on exchanging primary and backup paths in 1+1 path protected elastic optical networks. IEEE/ACM Trans. Netw. 25, 1717–1731 (2017)CrossRef
33.
go back to reference Goścień, R.: On the efficient dynamic routing in spectrally-spatially flexible optical networks. In Proceedings of the Resilient Networks Design and Modeling (RNDM), Nicosia, Cyprus, 14–16, (2019). Goścień, R.: On the efficient dynamic routing in spectrally-spatially flexible optical networks. In Proceedings of the Resilient Networks Design and Modeling (RNDM), Nicosia, Cyprus, 14–16, (2019).
34.
go back to reference Walkowiak, K., Klinkowski, M., Lechowicz, P.: Dynamic routing in spectrally spatially flexible optical networks with back-to-back regeneration. IEEE/OSA J. Opt. Commun. Netw 10, 523–534 (2018)CrossRef Walkowiak, K., Klinkowski, M., Lechowicz, P.: Dynamic routing in spectrally spatially flexible optical networks with back-to-back regeneration. IEEE/OSA J. Opt. Commun. Netw 10, 523–534 (2018)CrossRef
35.
go back to reference Gaizi, K., Abdi, F., Abbou, F.M.: Realistic dynamic traffic generation for WDM Optical Networks. In: Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC), Londonderry, UK, 21–22, pp. 1–4 (2016) Gaizi, K., Abdi, F., Abbou, F.M.: Realistic dynamic traffic generation for WDM Optical Networks. In: Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC), Londonderry, UK, 21–22, pp. 1–4 (2016)
36.
go back to reference Gencata, A., Mukherjee, B.: Virtual-topology adaptation for WDM mesh networks under dynamic traffic. IEEE/ACM Trans. Netw. 11, 236–247 (2003)CrossRef Gencata, A., Mukherjee, B.: Virtual-topology adaptation for WDM mesh networks under dynamic traffic. IEEE/ACM Trans. Netw. 11, 236–247 (2003)CrossRef
37.
go back to reference .Troia, S., Cibari, A., Alvizu, R., Maier, G.: Dynamic programming of network slices in software-defined metro-core optical networks. Opt. Switch. Netw, 36, 100551 (2020) .Troia, S., Cibari, A., Alvizu, R., Maier, G.: Dynamic programming of network slices in software-defined metro-core optical networks. Opt. Switch. Netw, 36, 100551 (2020)
38.
go back to reference Goścień, R., Knapińska, A., Włodarczyk, A.: Modeling and prediction of daily traffic patterns—wask and six case study. Electronics 10(14), 1637 (2021)CrossRef Goścień, R., Knapińska, A., Włodarczyk, A.: Modeling and prediction of daily traffic patterns—wask and six case study. Electronics 10(14), 1637 (2021)CrossRef
Metadata
Title
Machine Learning Model for Traffic Prediction and Pattern Extraction in High-Speed Optical Networks
Authors
Saloni Rai
Amit Kumar Garg
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_20