Skip to main content
Top
Published in:

04-11-2023

Machine Un-learning: An Overview of Techniques, Applications, and Future Directions

Authors: Siva Sai, Uday Mittal, Vinay Chamola, Kaizhu Huang, Indro Spinelli, Simone Scardapane, Zhiyuan Tan, Amir Hussain

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ML applications proliferate across various sectors. Large internet firms employ ML to train intelligent models using vast datasets, including sensitive user information. However, new regulations like GDPR require data removal by businesses. Deleting data from ML models is more complex than databases. Machine Un-learning (MUL), an emerging field, garners academic interest for selectively erasing learned data from ML models. MUL benefits multiple disciplines, enhancing privacy, security, usability, and accuracy. This article reviews MUL’s significance, providing a taxonomy and summarizing key MUL algorithms. We categorize modern MUL models by criteria, including model independence, data driven, and implementation considerations. We explore MUL applications in smart devices and recommendation systems. We also identify open questions and future research areas. This work advances methods for implementing regulations like GDPR and safeguarding user privacy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goldsteen A, Ezov G, Shmelkin R, Moffie M, Farkash A. Data minimization for gdpr compliance in machine learning models. AI and Ethics. 2021;1–15. Goldsteen A, Ezov G, Shmelkin R, Moffie M, Farkash A. Data minimization for gdpr compliance in machine learning models. AI and Ethics. 2021;1–15.
2.
go back to reference Mourby M, Cathaoir KO´, Collin CB. Transparency of machine-learning in healthcare: The gdpr & european health law. Comput Law Secur Rev. 2021;43:105611. Mourby M, Cathaoir KO´, Collin CB. Transparency of machine-learning in healthcare: The gdpr & european health law. Comput Law Secur Rev. 2021;43:105611.
6.
go back to reference Voigt P, Von A, dem Bussche, The EU general data protection regulation (gdpr), A Practical Guide, 1st Ed., Cham: Springer Inter- national Publishing. 2017;10(3152676):10–5555. Voigt P, Von A, dem Bussche, The EU general data protection regulation (gdpr), A Practical Guide, 1st Ed., Cham: Springer Inter- national Publishing. 2017;10(3152676):10–5555.
7.
go back to reference Strobel M, Aspects of transparency in machine learning, in Proceed- ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. 2019;2449–2451. Strobel M, Aspects of transparency in machine learning, in Proceed- ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. 2019;2449–2451.
8.
go back to reference Lu¨ L, Medo M, Yeung CH, Zhang Y-C, Zhang Z-K, Zhou T. Recommender systems. Phys Rep. 2012;519(1):1–49. Lu¨ L, Medo M, Yeung CH, Zhang Y-C, Zhang Z-K, Zhou T. Recommender systems. Phys Rep. 2012;519(1):1–49.
9.
go back to reference Resnick P, Varian HR. Recommender systems. Communica- tions of the ACM. 1997;40(3):56–8.CrossRef Resnick P, Varian HR. Recommender systems. Communica- tions of the ACM. 1997;40(3):56–8.CrossRef
10.
go back to reference Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Art Intell Res. 1996;4:237–85. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Art Intell Res. 1996;4:237–85.
12.
go back to reference Westin AF. Privacy and freedom. Washington and Lee Law Rev. 1968;25(1):166. Westin AF. Privacy and freedom. Washington and Lee Law Rev. 1968;25(1):166.
13.
go back to reference Jordan PW. An introduction to usability. Crc Press. 1998. Jordan PW. An introduction to usability. Crc Press. 1998.
23.
go back to reference Ayyagari R. An exploratory analysis of data breaches from 2005–2011: trends and insights. J Inf Priv Secur. 2012;8(2):33–56. Ayyagari R. An exploratory analysis of data breaches from 2005–2011: trends and insights. J Inf Priv Secur. 2012;8(2):33–56.
24.
go back to reference Li Y, Liu Q. A comprehensive review study of cyber-attacks and cyber security; emerging trends and recent developments. Energy Rep. 2021;7:8176–86.CrossRef Li Y, Liu Q. A comprehensive review study of cyber-attacks and cyber security; emerging trends and recent developments. Energy Rep. 2021;7:8176–86.CrossRef
25.
go back to reference Sethuraman SC, Vijayakumar V, Walczak S. Cyber attacks on healthcare devices using unmanned aerial vehicles. J Med Syst. 2020;44(1):29.CrossRef Sethuraman SC, Vijayakumar V, Walczak S. Cyber attacks on healthcare devices using unmanned aerial vehicles. J Med Syst. 2020;44(1):29.CrossRef
27.
go back to reference Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR). 2021;54(6):1–35.CrossRef Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR). 2021;54(6):1–35.CrossRef
30.
go back to reference Grover H, Alladi T, Chamola V, Singh D, Choo KK. Edge computing and deep learning enabled secure multitier network for internet of vehicles. IEEE Internet Things J. 2021;8(19):14787–14796. Grover H, Alladi T, Chamola V, Singh D, Choo KK. Edge computing and deep learning enabled secure multitier network for internet of vehicles. IEEE Internet Things J. 2021;8(19):14787–14796.
31.
go back to reference Zhou Z-H, Machine learning. Springer Nature. 2021. Zhou Z-H, Machine learning. Springer Nature. 2021.
32.
go back to reference Mitchell TM, et al. Machine learning. McGraw-hill New York. 2007;1. Mitchell TM, et al. Machine learning. McGraw-hill New York. 2007;1.
33.
go back to reference El Naqa I, Murphy MJ. What is machine learning? Springer. 2015. El Naqa I, Murphy MJ. What is machine learning? Springer. 2015.
34.
go back to reference Bottou L. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition. 2012;421–436. Bottou L. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition. 2012;421–436.
36.
go back to reference Gupta V, Jung C, Neel S, Roth A, Sharifi-Malvajerdi S, Waites C. Adaptive machine unlearning. Adv Neural Inf Process Sys. 2021;34:16319–16 330. Gupta V, Jung C, Neel S, Roth A, Sharifi-Malvajerdi S, Waites C. Adaptive machine unlearning. Adv Neural Inf Process Sys. 2021;34:16319–16 330.
38.
go back to reference Melnikov Y. Influence functions and matrices. CRC Press. 1998;119. Melnikov Y. Influence functions and matrices. CRC Press. 1998;119.
39.
go back to reference Ketkar N, Ketkar N. Stochastic gradient descent. Deep learning with Python: a hands-on introduction. 2017;113–132. Ketkar N, Ketkar N. Stochastic gradient descent. Deep learning with Python: a hands-on introduction. 2017;113–132.
40.
go back to reference Tahiliani A, Hassija V, Chamola V, Guizani M. Machine unlearning: its need and implementation strategies, in 2021 Thirteenth International Conference on Contemporary Computing (IC3–2021), ser. IC3 ’21. New York, NY, USA: association for computing machinery. 2021;241–246. [Online]. Available: https://doi.org/10.1145/3474124.3474158. Tahiliani A, Hassija V, Chamola V, Guizani M. Machine unlearning: its need and implementation strategies, in 2021 Thirteenth International Conference on Contemporary Computing (IC3–2021), ser. IC3 ’21. New York, NY, USA: association for computing machinery. 2021;241–246. [Online]. Available: https://​doi.​org/​10.​1145/​3474124.​3474158.
41.
go back to reference Sekhari A, Acharya J, Kamath G, Suresh AT. Remember what you want to forget: algorithms for machine unlearning. Advances in Neural Information Processing Systems. 2021;34: 18075–18086. Sekhari A, Acharya J, Kamath G, Suresh AT. Remember what you want to forget: algorithms for machine unlearning. Advances in Neural Information Processing Systems. 2021;34: 18075–18086.
42.
go back to reference Gill PE, Murray W, Wright MH. Practical optimization. SIAM. 2019. Gill PE, Murray W, Wright MH. Practical optimization. SIAM. 2019.
43.
go back to reference Bourtoule L, Chandrasekaran V, Choquette-Choo CA, Jia H, Travers A, Zhang B, Lie D, Papernot N, Machine unlearning, in,. IEEE Symposium on Security and Privacy (SP). IEEE. 2021;2021:141–59. Bourtoule L, Chandrasekaran V, Choquette-Choo CA, Jia H, Travers A, Zhang B, Lie D, Papernot N, Machine unlearning, in,. IEEE Symposium on Security and Privacy (SP). IEEE. 2021;2021:141–59.
45.
go back to reference Welsch RE. Influence functions and regression diagnostics, in Modern data analysis. Elsevier. 1982;149–169. Welsch RE. Influence functions and regression diagnostics, in Modern data analysis. Elsevier. 1982;149–169.
47.
go back to reference Van Dyk DA, Meng X-L. The art of data augmentation. J Comput Graph Stat. 2001;10(1):1–50. Van Dyk DA, Meng X-L. The art of data augmentation. J Comput Graph Stat. 2001;10(1):1–50.
49.
go back to reference Allison B, Guthrie D, Guthrie L. Another look at the data sparsity problem. InText, Speech and Dialogue: 9th International Conference, TSD 2006, Brno, Czech Republic, September 11-15, 2006. Proceedings 9. Springer. 2006;327–34. Allison B, Guthrie D, Guthrie L. Another look at the data sparsity problem. InText, Speech and Dialogue: 9th International Conference, TSD 2006, Brno, Czech Republic, September 11-15, 2006. Proceedings 9. Springer. 2006;327–34.
50.
go back to reference Zhang Y, Yang Q. An overview of multi-task learning. Natl Sci Rev. 2018;5(1):30–43.CrossRef Zhang Y, Yang Q. An overview of multi-task learning. Natl Sci Rev. 2018;5(1):30–43.CrossRef
51.
go back to reference Laal M, Salamati P. Lifelong learning; why do we need it? Procedia Soc Behav Sci. 2012;31:399–403.CrossRef Laal M, Salamati P. Lifelong learning; why do we need it? Procedia Soc Behav Sci. 2012;31:399–403.CrossRef
53.
go back to reference Nguyen TT, Duong CT, Weidlich M, Yin H, Nguyen QVH. Retaining data from streams of social platforms with minimal regret, in Twenty-sixth International Joint Conference on Artificial Intelligence, no. CONF. 2017. Nguyen TT, Duong CT, Weidlich M, Yin H, Nguyen QVH. Retaining data from streams of social platforms with minimal regret, in Twenty-sixth International Joint Conference on Artificial Intelligence, no. CONF. 2017.
57.
go back to reference Ginart A, Guan M, Valiant G, Zou JY. Making AI forget you: data deletion in machine learning. Adv Neural Inf Process Sys. 2019;32. Ginart A, Guan M, Valiant G, Zou JY. Making AI forget you: data deletion in machine learning. Adv Neural Inf Process Sys. 2019;32.
58.
go back to reference Brophy J, Lowd D. Machine unlearning for random forests, in International Conference on Machine Learning. PMLR. 2021;1092–1104. Brophy J, Lowd D. Machine unlearning for random forests, in International Conference on Machine Learning. PMLR. 2021;1092–1104.
59.
go back to reference Thudi A, Deza G, Chandrasekaran V, Papernot N, Unrolling sgd: understanding factors influencing machine unlearning, in,. IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE. 2022;2022:303–19. Thudi A, Deza G, Chandrasekaran V, Papernot N, Unrolling sgd: understanding factors influencing machine unlearning, in,. IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE. 2022;2022:303–19.
60.
go back to reference Neel S, Roth A, Sharifi-Malvajerdi S. Descent-to-delete: gradient-based methods for machine unlearning, in Algorithmic Learning Theory. PMLR. 2021;931–962. Neel S, Roth A, Sharifi-Malvajerdi S. Descent-to-delete: gradient-based methods for machine unlearning, in Algorithmic Learning Theory. PMLR. 2021;931–962.
61.
go back to reference Graves L, Nagisetty V, Ganesh V. Amnesiac machine learning, in Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35(13):11516–11524. Graves L, Nagisetty V, Ganesh V. Amnesiac machine learning, in Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35(13):11516–11524.
62.
go back to reference Dwork C, Differential privacy: a survey of results, in International conference on theory and applications of models of computation. Springer. 2008;1–19. Dwork C, Differential privacy: a survey of results, in International conference on theory and applications of models of computation. Springer. 2008;1–19.
63.
go back to reference Cao Y, Yang J, Towards making systems forget with machine unlearning, in,. IEEE Symposium on Security and Privacy. IEEE. 2015;2015:463–80. Cao Y, Yang J, Towards making systems forget with machine unlearning, in,. IEEE Symposium on Security and Privacy. IEEE. 2015;2015:463–80.
64.
go back to reference Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. Adv Neural Inf Process Sys. 2000;13. Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. Adv Neural Inf Process Sys. 2000;13.
65.
go back to reference Chen Y, Xiong J, Xu W, Zuo J. A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput. 2019;22(3):7435–45.CrossRef Chen Y, Xiong J, Xu W, Zuo J. A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput. 2019;22(3):7435–45.CrossRef
67.
go back to reference Schelter S, Grafberger S, Dunning T, Hedgecut: maintaining randomised trees for low-latency machine unlearning, in Proceedings of the 2021 International Conference on Management of Data. 2021;1545–1557. Schelter S, Grafberger S, Dunning T, Hedgecut: maintaining randomised trees for low-latency machine unlearning, in Proceedings of the 2021 International Conference on Management of Data. 2021;1545–1557.
68.
go back to reference Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.CrossRef Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.CrossRef
69.
go back to reference Golatkar A, Achille A, Soatto S. Forgetting outside the box: scrubbing deep networks of information accessible from input-output observations, in European Conference on Computer Vision. Springer. 2020; 383–398. Golatkar A, Achille A, Soatto S. Forgetting outside the box: scrubbing deep networks of information accessible from input-output observations, in European Conference on Computer Vision. Springer. 2020; 383–398.
70.
go back to reference Golatkar A, Achille A, Ravichandran A, Polito M, Soatto S. Mixed-privacy forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021;792–801. Golatkar A, Achille A, Ravichandran A, Polito M, Soatto S. Mixed-privacy forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021;792–801.
72.
go back to reference Koch K, Soll M. No matter how you slice it: machine unlearning with sisa comes at the expense of minority classes, in 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE. 2023;622–637. Koch K, Soll M. No matter how you slice it: machine unlearning with sisa comes at the expense of minority classes, in 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE. 2023;622–637.
73.
go back to reference Mahmud MS, Huang JZ, Salloum S, Emara TZ. and K. Sadat- diynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics. 2020;3(2):85–101. Mahmud MS, Huang JZ, Salloum S, Emara TZ. and K. Sadat- diynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics. 2020;3(2):85–101.
74.
go back to reference Picard RR, Berk KN. Data splitting. The American Statisti- cian. 1990;44(2):140–7. Picard RR, Berk KN. Data splitting. The American Statisti- cian. 1990;44(2):140–7.
76.
go back to reference Ul Hassan M, Rehmani MH, Rehan M, Chen J. Differential privacy in cognitive radio networks: a comprehensive survey. Cognitive Computation. 2022;1–36. Ul Hassan M, Rehmani MH, Rehan M, Chen J. Differential privacy in cognitive radio networks: a comprehensive survey. Cognitive Computation. 2022;1–36.
77.
go back to reference Szo¨re´nyi B. Characterizing statistical query learning: simplified notions and proofs, in International Conference on Algorithmic Learning Theory. Springer. 2009;186–200. Szo¨re´nyi B. Characterizing statistical query learning: simplified notions and proofs, in International Conference on Algorithmic Learning Theory. Springer. 2009;186–200.
79.
go back to reference Zhou Y, Huang K, Cheng C, Wang X, Hussain A, Liu X. Fastadabelief: improving convergence rate for belief-based adaptive optimizers by exploiting strong convexity. IEEE Transactions on Neural Networks and Learning Systems. 2022. Zhou Y, Huang K, Cheng C, Wang X, Hussain A, Liu X. Fastadabelief: improving convergence rate for belief-based adaptive optimizers by exploiting strong convexity. IEEE Transactions on Neural Networks and Learning Systems. 2022.
80.
go back to reference Ralambondrainy H. A conceptual version of the k-means algorithm. Pattern Recogn Lett. 1995;16(11):1147–57.CrossRef Ralambondrainy H. A conceptual version of the k-means algorithm. Pattern Recogn Lett. 1995;16(11):1147–57.CrossRef
81.
go back to reference Karasuyama M, Takeuchi I. Multiple incremental decremental learning of support vector machines. IEEE Trans Neural Networks. 2010;21(7):1048–59.CrossRef Karasuyama M, Takeuchi I. Multiple incremental decremental learning of support vector machines. IEEE Trans Neural Networks. 2010;21(7):1048–59.CrossRef
82.
go back to reference Joyce JM. Kullback-leibler divergence, in International encyclope- dia of statistical science. Springer. 2011;720–722. Joyce JM. Kullback-leibler divergence, in International encyclope- dia of statistical science. Springer. 2011;720–722.
83.
go back to reference Clark LA, Pregibon D. Tree-based models, in Statistical models in S. Routledge. 2017;377–419. Clark LA, Pregibon D. Tree-based models, in Statistical models in S. Routledge. 2017;377–419.
84.
go back to reference Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society. 2004;18(6):275–85.CrossRef Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society. 2004;18(6):275–85.CrossRef
86.
go back to reference Zhang Q, Zhong G, Dong J. A graph-based semi-supervised multi-label learning method based on label correlation consistency. Cogn Comput. 2021;13(6):1564–73.CrossRef Zhang Q, Zhong G, Dong J. A graph-based semi-supervised multi-label learning method based on label correlation consistency. Cogn Comput. 2021;13(6):1564–73.CrossRef
87.
go back to reference Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Fran- con O, Raju B, Shahrzad H, Navruzyan A, Duffy N, et al. Evolving deep neural networks, in Artificial intelligence in the age of neural networks and brain computing. Elsevier. 2019;293–312. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Fran- con O, Raju B, Shahrzad H, Navruzyan A, Duffy N, et al. Evolving deep neural networks, in Artificial intelligence in the age of neural networks and brain computing. Elsevier. 2019;293–312.
89.
go back to reference Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M. Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J. 2020;8(6):4448–60.CrossRef Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M. Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J. 2020;8(6):4448–60.CrossRef
90.
go back to reference Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE transactions on neural networks and learning systems. 2018;29(6):2063–79.MathSciNetCrossRef Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE transactions on neural networks and learning systems. 2018;29(6):2063–79.MathSciNetCrossRef
91.
go back to reference Boyd SP, Vandenberghe L. Convex optimization. Cambridge university press. 2004. Boyd SP, Vandenberghe L. Convex optimization. Cambridge university press. 2004.
93.
go back to reference Freese F, et al. Testing accuracy. Forest Sci. 1960;6(2):139–45. Freese F, et al. Testing accuracy. Forest Sci. 1960;6(2):139–45.
94.
go back to reference Hagenbach J, Koessler F. The Streisand effect: signaling and partial sophistication. J Econ Behav Organ. 2017;143:1–8.CrossRef Hagenbach J, Koessler F. The Streisand effect: signaling and partial sophistication. J Econ Behav Organ. 2017;143:1–8.CrossRef
95.
go back to reference Swiler LP, Paez TL, Mayes RL. Epistemic uncertainty quantification tutorial, in Proceedings of the 27th International Modal Analysis Conference. 2009. Swiler LP, Paez TL, Mayes RL. Epistemic uncertainty quantification tutorial, in Proceedings of the 27th International Modal Analysis Conference. 2009.
98.
go back to reference Shuvo MSR, Alhadidi D. Membership inference attacks: analysis and mitigation, in 2020 IEEE 19th International Conference on Trust. Security and Privacy in Computing and Communications (TrustCom). 2020;1410–1419. Shuvo MSR, Alhadidi D. Membership inference attacks: analysis and mitigation, in 2020 IEEE 19th International Conference on Trust. Security and Privacy in Computing and Communications (TrustCom). 2020;1410–1419.
99.
go back to reference Liu X, Xie L, Wang Y, Zou J, Xiong J, Ying Z, Vasilakos AV. Privacy and security issues in deep learning: a survey. IEEE Access. 2020;9:4566–93.CrossRef Liu X, Xie L, Wang Y, Zou J, Xiong J, Ying Z, Vasilakos AV. Privacy and security issues in deep learning: a survey. IEEE Access. 2020;9:4566–93.CrossRef
100.
go back to reference Chundawat VS, Tarun AK, Mandal M, Kankanhalli M. Zeroshot machine unlearning. IEEE Transactions on Information Forensics and Security. 2023. Chundawat VS, Tarun AK, Mandal M, Kankanhalli M. Zeroshot machine unlearning. IEEE Transactions on Information Forensics and Security. 2023.
102.
go back to reference Fredrikson M. Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New York, NY, USA: Association for Computing Machinery. 2015;1322–1333. [Online]. Available: https://doi.org/10.1145/2810103.2813677. Fredrikson M. Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New York, NY, USA: Association for Computing Machinery. 2015;1322–1333. [Online]. Available: https://​doi.​org/​10.​1145/​2810103.​2813677.
103.
go back to reference Xian Y, Lampert CH, Schiele B, Akata Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal Mach Intell. 2018;41(9):2251–65.CrossRef Xian Y, Lampert CH, Schiele B, Akata Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal Mach Intell. 2018;41(9):2251–65.CrossRef
104.
go back to reference Golatkar A, Achille A, Soatto S. Eternal sunshine of the spotless net: Selective forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020;9304–9312. Golatkar A, Achille A, Soatto S. Eternal sunshine of the spotless net: Selective forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020;9304–9312.
107.
go back to reference Wiedmann T, Minx J. A definition of ‘carbon footprint.’ Eco- logical economics research trends. 2008;1(2008):1–11. Wiedmann T, Minx J. A definition of ‘carbon footprint.’ Eco- logical economics research trends. 2008;1(2008):1–11.
108.
go back to reference Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J. Towards the systematic reporting of the energy and carbon footprints of machine learning. J Mach Learn Res. 2020;21(1):10039–10081. Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J. Towards the systematic reporting of the energy and carbon footprints of machine learning. J Mach Learn Res. 2020;21(1):10039–10081.
109.
go back to reference L. F. W. Anthony, B. Kanding, and R. Selvan, Carbontracker: tracking and predicting the carbon footprint of training deep learning models. arXiv preprint. http://arXiv:2007.03051. 2020. L. F. W. Anthony, B. Kanding, and R. Selvan, Carbontracker: tracking and predicting the carbon footprint of training deep learning models. arXiv preprint. http://​arXiv:​2007.​03051. 2020.
110.
go back to reference T. Alladi, B. Gera, A. Agrawal, V. Chamola, and F. R. Yu, Deepadv: a deep neural network framework for anomaly detection in vanets. IEEE Transactions on Vehicular Technology. 2021;70(11):12013–12023. T. Alladi, B. Gera, A. Agrawal, V. Chamola, and F. R. Yu, Deepadv: a deep neural network framework for anomaly detection in vanets. IEEE Transactions on Vehicular Technology. 2021;70(11):12013–12023.
111.
go back to reference Shokri R, Stronati M, Song C, Shmatikov V, Membership inference attacks against machine learning models, in,. IEEE symposium on security and privacy (SP). IEEE. 2017;2017:3–18. Shokri R, Stronati M, Song C, Shmatikov V, Membership inference attacks against machine learning models, in,. IEEE symposium on security and privacy (SP). IEEE. 2017;2017:3–18.
112.
go back to reference Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated learning. Knowl-Based Syst. 2021;216: 106775.CrossRef Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated learning. Knowl-Based Syst. 2021;216: 106775.CrossRef
113.
go back to reference Li L, Fan Y, Tse M, Lin K-Y. A review of applications in federated learning. Comput Ind Eng. 2020;149: 106854.CrossRef Li L, Fan Y, Tse M, Lin K-Y. A review of applications in federated learning. Comput Ind Eng. 2020;149: 106854.CrossRef
114.
go back to reference Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag. 2020;37(3):50–60.CrossRef Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag. 2020;37(3):50–60.CrossRef
115.
go back to reference Aspin DN, Chapman JD. Lifelong learning: concepts and conceptions. Int J Lifelong Educ. 2000;19(1):2–19.CrossRef Aspin DN, Chapman JD. Lifelong learning: concepts and conceptions. Int J Lifelong Educ. 2000;19(1):2–19.CrossRef
116.
go back to reference Thrun S. Lifelong learning algorithms Learning to learn. 1998;8:181–209. Thrun S. Lifelong learning algorithms Learning to learn. 1998;8:181–209.
118.
go back to reference Yapo A, Weiss J. Ethical implications of bias in machine learning, 2018. Yapo A, Weiss J. Ethical implications of bias in machine learning, 2018.
119.
go back to reference Roscher R, Bohn B, Duarte MF, Garcke J. Explainable machine learning for scientific insights and discoveries. Ieee Access. 2020;8:42200–42216. Roscher R, Bohn B, Duarte MF, Garcke J. Explainable machine learning for scientific insights and discoveries. Ieee Access. 2020;8:42200–42216.
120.
go back to reference Belle V, Papantonis I. Principles and practice of explainable machine learning. Frontiers in big Data. 2021;39. Belle V, Papantonis I. Principles and practice of explainable machine learning. Frontiers in big Data. 2021;39.
122.
go back to reference Ribeiro MT, Singh S, Guestrin C. Why should I trust you?: explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August. 2016;1135–1144. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?: explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August. 2016;1135–1144.
124.
go back to reference Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63.CrossRef Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63.CrossRef
126.
127.
go back to reference Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877–901. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877–901.
128.
go back to reference Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21(140):1–67.MathSciNet Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21(140):1–67.MathSciNet
129.
go back to reference Fedus W, Zoph B, Shazeer N. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. 2021. Fedus W, Zoph B, Shazeer N. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. 2021.
130.
131.
go back to reference Apte C, The role of machine learning in business optimization, in Proceedings of the 27th International Conference on Machine Learning (ICML-10). Citeseer. 2010;1–2. Apte C, The role of machine learning in business optimization, in Proceedings of the 27th International Conference on Machine Learning (ICML-10). Citeseer. 2010;1–2.
132.
go back to reference Singh S, Sulthana R, Shewale T, Chamola V, Benslimane A, Sikdar B. Machine-learning-assisted security and privacy provisioning for edge computing: a survey. IEEE Internet Things J. 2021;9(1):236–60.CrossRef Singh S, Sulthana R, Shewale T, Chamola V, Benslimane A, Sikdar B. Machine-learning-assisted security and privacy provisioning for edge computing: a survey. IEEE Internet Things J. 2021;9(1):236–60.CrossRef
133.
go back to reference Miao Y, Chen C, Pan L, Han Q-L, Zhang J, Xiang Y. Machine learning–based cyber attacks targeting on controlled information: a survey. ACM Computing Surveys (CSUR). 2021;54(7):1–36.CrossRef Miao Y, Chen C, Pan L, Han Q-L, Zhang J, Xiang Y. Machine learning–based cyber attacks targeting on controlled information: a survey. ACM Computing Surveys (CSUR). 2021;54(7):1–36.CrossRef
134.
go back to reference Wazid M, Das AK, Chamola V, Park Y. Uniting cyber security and machine learning: advantages, challenges and future research. ICT Express. 2022;8(3):313–21.CrossRef Wazid M, Das AK, Chamola V, Park Y. Uniting cyber security and machine learning: advantages, challenges and future research. ICT Express. 2022;8(3):313–21.CrossRef
135.
go back to reference Chamola V, Goyal A, Sharma P, Hassija V, Binh HTT, Saxena V. Artificial intelligence-assisted blockchain-based framework for smart and secure emr management. Neural Computing and Appli- cations. 2022;1–11. Chamola V, Goyal A, Sharma P, Hassija V, Binh HTT, Saxena V. Artificial intelligence-assisted blockchain-based framework for smart and secure emr management. Neural Computing and Appli- cations. 2022;1–11.
136.
go back to reference Isinkaye FO, Folajimi YO, Ojokoh BA. Recommendation systems: principles, methods and evaluation. Egypt Inform J. 2015;16(3):261–73. Isinkaye FO, Folajimi YO, Ojokoh BA. Recommendation systems: principles, methods and evaluation. Egypt Inform J. 2015;16(3):261–73.
137.
go back to reference Pavithra D. Jayanthi A. A study on machine learning algorithm in medical diagnosis. Int J Adv Res Comput Sci. 2018;9(4). Pavithra D. Jayanthi A. A study on machine learning algorithm in medical diagnosis. Int J Adv Res Comput Sci. 2018;9(4).
138.
go back to reference Rohmetra H, Raghunath N, Narang P, Chamola V, Guizani M, Lakkaniga NR. AI-enabled remote monitoring of vital signs for covid-19: methods, prospects and challenges. Computing. 2021;1–27. Rohmetra H, Raghunath N, Narang P, Chamola V, Guizani M, Lakkaniga NR. AI-enabled remote monitoring of vital signs for covid-19: methods, prospects and challenges. Computing. 2021;1–27.
139.
go back to reference Bansal G, Chamola V, Narang P, Kumar S, Raman S. Deep3dscan: deep residual network and morphological descriptor based framework forlung cancer classification and 3d segmentation. IET Image Proc. 2020;14(7):1240–7.CrossRef Bansal G, Chamola V, Narang P, Kumar S, Raman S. Deep3dscan: deep residual network and morphological descriptor based framework forlung cancer classification and 3d segmentation. IET Image Proc. 2020;14(7):1240–7.CrossRef
140.
go back to reference Delgado-Rodriguez M, Llorca Bias J. Journal of Epidemiology & Community Health. 2004;58(8):635–641. Delgado-Rodriguez M, Llorca Bias J. Journal of Epidemiology & Community Health. 2004;58(8):635–641.
141.
go back to reference Danks D, London AJ. Algorithmic bias in autonomous systems. Ijcai. 2017;17(2017):4691–7. Danks D, London AJ. Algorithmic bias in autonomous systems. Ijcai. 2017;17(2017):4691–7.
142.
go back to reference Malerba D, Esposito F, Lanza A, Lisi FA. Machine learning for information extraction from topographic maps. Geographic data mining and knowledge discovery. 2001;291–314. Malerba D, Esposito F, Lanza A, Lisi FA. Machine learning for information extraction from topographic maps. Geographic data mining and knowledge discovery. 2001;291–314.
143.
go back to reference Hutchins WJ, Machine translation: past, present, future. Ellis Horwood Chichester. 1986. Hutchins WJ, Machine translation: past, present, future. Ellis Horwood Chichester. 1986.
144.
go back to reference Grieco LA, Rizzo A, Colucci S, Sicari S, Piro G, Di Paola D, Boggia G. IoT-aided robotics applications: technological implications, target domains and open issues. Comput Commun. 2014;54:32–47.CrossRef Grieco LA, Rizzo A, Colucci S, Sicari S, Piro G, Di Paola D, Boggia G. IoT-aided robotics applications: technological implications, target domains and open issues. Comput Commun. 2014;54:32–47.CrossRef
145.
go back to reference Roy Chowdhury A, Iot and robotics: a synergy. PeerJ Preprints. 2017;5:e2760v1. Roy Chowdhury A, Iot and robotics: a synergy. PeerJ Preprints. 2017;5:e2760v1.
146.
go back to reference Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM computing surveys (CSUR). 2003;35(4):399–458.CrossRef Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM computing surveys (CSUR). 2003;35(4):399–458.CrossRef
147.
go back to reference Hernandez G, Arias O, Buentello D, Jin Y, Smart nest thermostat: a smart spy in your home. Black Hat USA. no. 2015, 2014. Hernandez G, Arias O, Buentello D, Jin Y, Smart nest thermostat: a smart spy in your home. Black Hat USA. no. 2015, 2014.
149.
go back to reference Gogate M, Dashtipour K, Adeel A, Hussain A. Cochleanet: a robust language-independent audio-visual model for real-time speech enhancement. Information Fusion. 2020;63:273–85.CrossRef Gogate M, Dashtipour K, Adeel A, Hussain A. Cochleanet: a robust language-independent audio-visual model for real-time speech enhancement. Information Fusion. 2020;63:273–85.CrossRef
151.
go back to reference Adeel A, Gogate M, Hussain A. Contextual deep learning- based audio-visual switching for speech enhancement in real-world environments. Information Fusion. 2020;59:163–70.CrossRef Adeel A, Gogate M, Hussain A. Contextual deep learning- based audio-visual switching for speech enhancement in real-world environments. Information Fusion. 2020;59:163–70.CrossRef
152.
go back to reference Alladi T, Kohli V, Chamola V, Yu FR, Securing the internet of vehicles: a deep learning based classification framework. IEEE Networking Letters. 2021. Alladi T, Kohli V, Chamola V, Yu FR, Securing the internet of vehicles: a deep learning based classification framework. IEEE Networking Letters. 2021.
153.
go back to reference Wang W, Zheng VW, Yu H, Miao C. A survey of zero-shot learning: settings, methods, and applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2019;10(2):1–37. Wang W, Zheng VW, Yu H, Miao C. A survey of zero-shot learning: settings, methods, and applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2019;10(2):1–37.
154.
go back to reference Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM computing surveys (csur). 2020;53(3):1–34.CrossRef Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM computing surveys (csur). 2020;53(3):1–34.CrossRef
155.
go back to reference Rahman S, Khan S, Porikli F. A unified approach for conventional zero-shot, generalized zero-shot, and few-shot learning. IEEE Trans Image Process. 2018;27(11):5652–67.MathSciNetCrossRef Rahman S, Khan S, Porikli F. A unified approach for conventional zero-shot, generalized zero-shot, and few-shot learning. IEEE Trans Image Process. 2018;27(11):5652–67.MathSciNetCrossRef
Metadata
Title
Machine Un-learning: An Overview of Techniques, Applications, and Future Directions
Authors
Siva Sai
Uday Mittal
Vinay Chamola
Kaizhu Huang
Indro Spinelli
Simone Scardapane
Zhiyuan Tan
Amir Hussain
Publication date
04-11-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10219-3

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner