Skip to main content
Top

2025 | OriginalPaper | Chapter

Machine Vision Approach of Bridges Crack Identification Based on the Fusion of UAV Vision and LiDAR

Authors : Zhu Runqiu, Lai Tinglin, Weixing Hong, Ahmed Silik, Mohammad Noori, Wael A. Altabey

Published in: Proceedings of the 4th International Civil Engineering and Architecture Conference

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of machine vision algorithms in 3D bridges imaging and bridges inspection based on the fusion of UAV vision and LiDAR has a history of several years. Nonetheless, there is still lack of system research articles about this technology, especially for deep learning models developed to solve these problems. This article first introduces a comparison between the bridges crack detection system for classic 2D by using UAV camera images collection only and 3D by fusion between imaging information of the UAV camera technique and LiDAR technique for one crack in common that is, the original information detected by these two technologies is the scattering point information of the target. Subsequently, a convolutional neural network (CNN) is used for UAV and LiDAR imaging information feature fusion, which enhances the ability to extract damage features of bridge structures, and uses data fusion application to fusion a LiDAR and UAV detection scatter points for cracks, which improves the accuracy of bridge structure damage target detection in the real-time. The author believes that this study can provide practical guidance for the development of the next generation bridges condition evaluation system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Ghiasi R, Noori M, Altabey WA, Wang T, Wu Z (2022) Structural damage detection under uncertain parameters using non-probabilistic meta-model and interval mathematics. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 670–679. https://doi.org/10.1061/9780784484449.061 Ghiasi R, Noori M, Altabey WA, Wang T, Wu Z (2022) Structural damage detection under uncertain parameters using non-probabilistic meta-model and interval mathematics. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 670–679. https://​doi.​org/​10.​1061/​9780784484449.​061
3.
go back to reference Zhang C, Xu Y, Silik A, Li H, Noori M, Altabey WA (2023) Analysis of instantaneous frequency for structure condition tracking using time-frequency representation: comparative study. In: 22nd international scientific conference engineering for rural development, ERD 2023 Jelgava, vol 22, pp 1045–1051, 191585. https://doi.org/10.22616/ERDev.2023.22.TF212 Zhang C, Xu Y, Silik A, Li H, Noori M, Altabey WA (2023) Analysis of instantaneous frequency for structure condition tracking using time-frequency representation: comparative study. In: 22nd international scientific conference engineering for rural development, ERD 2023 Jelgava, vol 22, pp 1045–1051, 191585. https://​doi.​org/​10.​22616/​ERDev.​2023.​22.​TF212
5.
go back to reference Silik A, Wang X, Mei C, Jin X, Zhou X, Zhou W, Chen C, Hong W, Li J, Mao M, Liu Y, Noori M, Altabey WA (2023) Development of features for early detection of defects and assessment of bridge decks. SDHM Struct Durability Health Monit 17(4):257–281. https://doi.org/10.32604/sdhm.2023.023617 Silik A, Wang X, Mei C, Jin X, Zhou X, Zhou W, Chen C, Hong W, Li J, Mao M, Liu Y, Noori M, Altabey WA (2023) Development of features for early detection of defects and assessment of bridge decks. SDHM Struct Durability Health Monit 17(4):257–281. https://​doi.​org/​10.​32604/​sdhm.​2023.​023617
9.
go back to reference Altabey WA, Noori M, Wu Z, Silik A, Vasilis S (2023) Enhancement of structural health monitoring framework on beams based on k-nearest neighbor algorithm. In: Proceedings of the 14th international workshop on structural health monitoring (IWSHM 2023): statistical methods and machine learning. Stanford University, California, USA, paper No. 2926. ISBN: 9781605956930. Altabey WA, Noori M, Wu Z, Silik A, Vasilis S (2023) Enhancement of structural health monitoring framework on beams based on k-nearest neighbor algorithm. In: Proceedings of the 14th international workshop on structural health monitoring (IWSHM 2023): statistical methods and machine learning. Stanford University, California, USA, paper No. 2926. ISBN: 9781605956930.
11.
go back to reference Silik A, Noori M, Altabey WA, Ji D, Ghiasi R (2022) A new denoising technique via wavelet analysis of structural vibration response for structural health monitoring applications. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 691–706. https://doi.org/10.1061/9780784484449.063 Silik A, Noori M, Altabey WA, Ji D, Ghiasi R (2022) A new denoising technique via wavelet analysis of structural vibration response for structural health monitoring applications. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 691–706. https://​doi.​org/​10.​1061/​9780784484449.​063
12.
go back to reference Altabey WA, Noori M, Wu Z, Silik A, Farhan NSD (2023) Effective technique for structures damage detection based on the structural frequency maps. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece Altabey WA, Noori M, Wu Z, Silik A, Farhan NSD (2023) Effective technique for structures damage detection based on the structural frequency maps. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece
13.
go back to reference Altabey WA, Noori M, Wu Z (2023) Deep learning-based crack, location and area identification for a pipeline by the convolutional neural network based on crack contour network method. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece Altabey WA, Noori M, Wu Z (2023) Deep learning-based crack, location and area identification for a pipeline by the convolutional neural network based on crack contour network method. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece
18.
go back to reference Yanliang X, Chuanyue Z, Gongzuo S, Ye J, Yujin Q, Xueshun M, Jingtao X, Noori M, Altabey WA (2023) Research of pavement crack detection system based on image processing. In: Proceedings of SPIE 12590, third international conference on computer vision and information technology (CVIT 2022), p 1259007. https://doi.org/10.1117/12.2669715 Yanliang X, Chuanyue Z, Gongzuo S, Ye J, Yujin Q, Xueshun M, Jingtao X, Noori M, Altabey WA (2023) Research of pavement crack detection system based on image processing. In: Proceedings of SPIE 12590, third international conference on computer vision and information technology (CVIT 2022), p 1259007. https://​doi.​org/​10.​1117/​12.​2669715
20.
24.
go back to reference Weixing H, Ju W, Dangui G, Xiaodong W, Gongzuo S, Yan-liang X, Chuanyue Z, Noori M, Altabey WA (2022) Artificial intelligence technique for pavement diseases identification, ACM digital library. In: Proceedings of the 4th international conference on intelligent science and technology (ICIST ‘22), pp 66–72. https://doi.org/10.1145/3568923.3570515 Weixing H, Ju W, Dangui G, Xiaodong W, Gongzuo S, Yan-liang X, Chuanyue Z, Noori M, Altabey WA (2022) Artificial intelligence technique for pavement diseases identification, ACM digital library. In: Proceedings of the 4th international conference on intelligent science and technology (ICIST ‘22), pp 66–72. https://​doi.​org/​10.​1145/​3568923.​3570515
Metadata
Title
Machine Vision Approach of Bridges Crack Identification Based on the Fusion of UAV Vision and LiDAR
Authors
Zhu Runqiu
Lai Tinglin
Weixing Hong
Ahmed Silik
Mohammad Noori
Wael A. Altabey
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-5477-9_4