Skip to main content
Top

2023 | OriginalPaper | Chapter

MAGMA: Mobility Analytics Generated from Metrics on ADAS

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern Advanced Driver Assistance Systems (ADAS) have complex logic for determining when and where feature use is appropriate, generally based on geolocation and the vehicle’s sensor suite. This variability can lead to a problem of how to meaningfully measure customer experience from ADAS feature usage data. To provide a broad understanding of customer experience and where the feature should have been active but was not, the data must be viewed relative to the feature availability map. The feature activation and availability experienced by a driver is dependent on numerous design decisions (such as the map and map previewing logic), which may affect the process of understanding the raw data. Therefore, it is critical to compare customer ADAS feature usage data to what the vehicle could have previewed in the best-case customer experience scenario by simulating the feature availability based just on the feature design logic, the vehicle’s location, and the map. This enhanced understanding of customer experience allows for the discovery of corner cases and enables improved feature design. In short, customer ADAS feature usage data can be better understood in the appropriate context, where offline simulations of the designed feature logic provide an appropriate normalization factor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Takács Á, Drexler DA, Galambos P, Rudas IJ, Haidegger T (2018) Assessment and standardization of autonomous vehicles. In: 2018 IEEE 22nd international conference on intelligent engineering systems (INES). IEEE, pp 000185–000192 Takács Á, Drexler DA, Galambos P, Rudas IJ, Haidegger T (2018) Assessment and standardization of autonomous vehicles. In: 2018 IEEE 22nd international conference on intelligent engineering systems (INES). IEEE, pp 000185–000192
2.
go back to reference McQueen B (2017) Big data analytics for connected vehicles and smart cities. Artech House McQueen B (2017) Big data analytics for connected vehicles and smart cities. Artech House
3.
go back to reference Gao H, Cheng B, Wang J, Li K, Zhao J, Li D (2018) Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans Industr Inf 14(9):4224–4231CrossRef Gao H, Cheng B, Wang J, Li K, Zhao J, Li D (2018) Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans Industr Inf 14(9):4224–4231CrossRef
4.
go back to reference Ye D, Yu R, Pan M, Han Z (2020) Federated learning in vehicular edge computing: a selective model aggregation approach. IEEE Access 8:23920–23935CrossRef Ye D, Yu R, Pan M, Han Z (2020) Federated learning in vehicular edge computing: a selective model aggregation approach. IEEE Access 8:23920–23935CrossRef
5.
go back to reference Vishnukumar HJ, Butting B, Müller C, Sax E (2017) Machine learning and deep neural network—artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation. In: 2017 Intelligent systems conference (IntelliSys). IEEE, pp 714–721 Vishnukumar HJ, Butting B, Müller C, Sax E (2017) Machine learning and deep neural network—artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation. In: 2017 Intelligent systems conference (IntelliSys). IEEE, pp 714–721
6.
go back to reference Harms IM, Bingen L, Steffens J (2020) Addressing the awareness gap: a combined survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets. Transp Res Part A: Policy Pract 134:65–77 Harms IM, Bingen L, Steffens J (2020) Addressing the awareness gap: a combined survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets. Transp Res Part A: Policy Pract 134:65–77
7.
go back to reference Stein Gdeon, Blumenthal I, Shaag N, Moskowitz J (2020) Vehicle environment modeling with a camera. U.S. Patent Number 10,872,433. U.S. Patent and Trademark Office, Washington, DC Stein Gdeon, Blumenthal I, Shaag N, Moskowitz J (2020) Vehicle environment modeling with a camera. U.S. Patent Number 10,872,433. U.S. Patent and Trademark Office, Washington, DC
8.
go back to reference Matthaei R, Bagschik G, Maurer M (2014) Map-relative localization in lane-level maps for ADAS and autonomous driving. In: 2014 IEEE Intelligent vehicles symposium proceedings. IEEE, pp 49–55 Matthaei R, Bagschik G, Maurer M (2014) Map-relative localization in lane-level maps for ADAS and autonomous driving. In: 2014 IEEE Intelligent vehicles symposium proceedings. IEEE, pp 49–55
9.
go back to reference Okuda R, Kajiwara Y, Terashima K (2014) A survey of technical trend of ADAS and autonomous driving. In: Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test. IEEE, pp 1–4 Okuda R, Kajiwara Y, Terashima K (2014) A survey of technical trend of ADAS and autonomous driving. In: Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test. IEEE, pp 1–4
10.
go back to reference Groh A, Thomas C, Lerner J, Gifford J et al (2019) Location-based vehicle operation. U.S. Patent Application No. 20210063167(A1). U.S. Patent and Trademark Office, Washington, DC Groh A, Thomas C, Lerner J, Gifford J et al (2019) Location-based vehicle operation. U.S. Patent Application No. 20210063167(A1). U.S. Patent and Trademark Office, Washington, DC
11.
go back to reference Johansson KH, Törngren M, Nielsen L (2005) Vehicle applications of controller area network. In: Handbook of networked and embedded control systems. Birkhäuser Boston, pp 741–765 Johansson KH, Törngren M, Nielsen L (2005) Vehicle applications of controller area network. In: Handbook of networked and embedded control systems. Birkhäuser Boston, pp 741–765
12.
go back to reference Fling T, Filev D, Kristinsson J, Wisniewski J et al (2017) Vehicle mode determination. U.S. Patent No. 9,796,388. U.S. Patent and Trademark Office, Washington, DC Fling T, Filev D, Kristinsson J, Wisniewski J et al (2017) Vehicle mode determination. U.S. Patent No. 9,796,388. U.S. Patent and Trademark Office, Washington, DC
13.
go back to reference Newson P, Krumm J (2009) Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 336–343 Newson P, Krumm J (2009) Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 336–343
15.
go back to reference Zeng X, Schmotzer J, Poll M, Raval S, Bandi P (2020) Systems and methods for providing predictive distance-to-empty for vehicles. U.S. Patent Application No. 16/353,922. U.S. Patent and Trademark Office, Washington, DC Zeng X, Schmotzer J, Poll M, Raval S, Bandi P (2020) Systems and methods for providing predictive distance-to-empty for vehicles. U.S. Patent Application No. 16/353,922. U.S. Patent and Trademark Office, Washington, DC
16.
go back to reference Lerner J, Issac J, Lim JH (2020) Automated vehicle profile differentiation and learning. U.S. Patent Application No. 16/441,613. U.S. Patent and Trademark Office, Washington, DC Lerner J, Issac J, Lim JH (2020) Automated vehicle profile differentiation and learning. U.S. Patent Application No. 16/441,613. U.S. Patent and Trademark Office, Washington, DC
17.
go back to reference Liu S, Qu Q (2016) Dynamic collective routing using crowdsourcing data. Transp Res Part B: Methodol 93:450–469CrossRef Liu S, Qu Q (2016) Dynamic collective routing using crowdsourcing data. Transp Res Part B: Methodol 93:450–469CrossRef
18.
go back to reference Chen Y, Zhou M, Zheng Z, Huo M (2019) Toward practical crowdsourcing-based road anomaly detection with scale-invariant feature. IEEE Access 7:67666–67678CrossRef Chen Y, Zhou M, Zheng Z, Huo M (2019) Toward practical crowdsourcing-based road anomaly detection with scale-invariant feature. IEEE Access 7:67666–67678CrossRef
Metadata
Title
MAGMA: Mobility Analytics Generated from Metrics on ADAS
Authors
Jeremy Lerner
Dina Tayim
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-06780-8_12

Premium Partner