Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic and Magnetocaloric Properties of the Tm1 – xYx(Co0.84Fe0.16)2 Compounds

Authors: M. S. Anikin, E. N. Tarasov, D. S. Neznakhin, M. A. Semkin, S. V. Andreev, N. V. Selezneva, M. V. Ragozina, E. V. Potapov, A. V. Zinin

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

The effect of substitution of yttrium for thulium in the Tm(Co0.84Fe0.16)2 compound on the crystal structure, temperature and field dependences of magnetization (σ), temperature dependences of the high-field susceptibility (χhf), isothermal magnetic entropy change (∆Sm), and adiabatic temperature change (∆Tad) is studied. The magnetic and magnetocaloric properties were measured in magnetic fields up to 90 kOe in a temperature range of 5–380 K. The dependences σ(T) measured in an external magnetic field of 100 Oe were found to exhibit the magnetization inversion. The field dependence of the magnetic moment of the Tm0.4Y0.6(Co0.84Fe0.16)2 compound, which is measured at 5 K, exhibits a point of inflection corresponding to a magnetic field of 49.5 kOe; the substantial increase in the magnetic field leads to an increase in the susceptibility of the sample to the magnetic field. Samples characterized by magnetic compensation temperature demonstrate the alternation of direct and inverse magnetocaloric effect (MCE). A number of the compounds under study exhibit the plateau-like temperature dependences of ∆Sm and ∆Tad in a temperature range of inverse MCE. The results obtained are discussed.
Literature
1.
go back to reference V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef
2.
go back to reference M. Anikin, E. Tarasov, N. Kudrevatykh, A. Inishev, M. Semkin, A. Volegov, and A. Zinin, “Features of magnetic and thermal properties of R(Co 1–xFe x) 2 ( x ≤ 0.16) quasibinary compounds with R = Dy, Ho, Er,” J. Magn. Magn. Mater. 418, 181–187 (2016). CrossRef M. Anikin, E. Tarasov, N. Kudrevatykh, A. Inishev, M. Semkin, A. Volegov, and A. Zinin, “Features of magnetic and thermal properties of R(Co 1–xFe x) 2 ( x ≤ 0.16) quasibinary compounds with R = Dy, Ho, Er,” J. Magn. Magn. Mater. 418, 181–187 (2016). CrossRef
3.
go back to reference I. Chaaba, S. Othmani, S. Haj-Khlifa, P. de Rango, D. Fruchart, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, “Magnetic and magnetocaloric properties of Er(Co 1–xFe x) 2 intermetallic compounds,” J. Magn. Magn. Mater. 439, 269–276 (2017). CrossRef I. Chaaba, S. Othmani, S. Haj-Khlifa, P. de Rango, D. Fruchart, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, “Magnetic and magnetocaloric properties of Er(Co 1–xFe x) 2 intermetallic compounds,” J. Magn. Magn. Mater. 439, 269–276 (2017). CrossRef
4.
go back to reference M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. S. Volegov, and A. V. Zinin, “Magnetic properties of R(Co 0.88Fe 0.12) 2 quasi-binary compounds,” J. Phys.: Conf. Ser. 1389, 012061 (2019). M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. S. Volegov, and A. V. Zinin, “Magnetic properties of R(Co 0.88Fe 0.12) 2 quasi-binary compounds,” J. Phys.: Conf. Ser. 1389, 012061 (2019).
5.
go back to reference E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, “Evidence in rare-earth (R)-transition metal (M) intermetallics for a systematic dependence of R-M exchange interactions on the nature of the R atom,” J. Appl. Phys. 61, 3971 (1987). CrossRef E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, “Evidence in rare-earth (R)-transition metal (M) intermetallics for a systematic dependence of R-M exchange interactions on the nature of the R atom,” J. Appl. Phys. 61, 3971 (1987). CrossRef
6.
go back to reference M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. A. Inishev, and A. V. Zinin, “Thermomagnetic properties of materials based on R(Co 1–xFe x) 2 laves phases with heavy rare-earth metals,” Met. Sci. Heat Treat. 60, 522–527 (2018). CrossRef M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, A. A. Inishev, and A. V. Zinin, “Thermomagnetic properties of materials based on R(Co 1–xFe x) 2 laves phases with heavy rare-earth metals,” Met. Sci. Heat Treat. 60, 522–527 (2018). CrossRef
7.
go back to reference M. Balli, D. Fruchart, and D. Gignoux, “A study of magnetism and magnetocaloric effect in Ho 1 – xTb xCo 2 compounds,” J. Magn. Magn. Mater. 314, 16–20 (2007). CrossRef M. Balli, D. Fruchart, and D. Gignoux, “A study of magnetism and magnetocaloric effect in Ho 1 – xTb xCo 2 compounds,” J. Magn. Magn. Mater. 314, 16–20 (2007). CrossRef
8.
go back to reference J. Cwik, “Effect of partial Gd substitution on the magnetic and magnetocaloric properties in Dy–Ho–Gd–Co multicomponent compounds,” Phys. Status Solidi B 250 (9), 1926–1931 (2013). CrossRef J. Cwik, “Effect of partial Gd substitution on the magnetic and magnetocaloric properties in Dy–Ho–Gd–Co multicomponent compounds,” Phys. Status Solidi B 250 (9), 1926–1931 (2013). CrossRef
9.
go back to reference J. Rodriguez-Carvajal, “Resent advances in magnetic structure determination by neutron powder diffraction,” Phys. B (Amsterdam) 192, 55–69 (1993). CrossRef J. Rodriguez-Carvajal, “Resent advances in magnetic structure determination by neutron powder diffraction,” Phys. B (Amsterdam) 192, 55–69 (1993). CrossRef
10.
go back to reference A. V. Andreev, D. I. Gorbunov, J. Sebek, and D. S. Neznakhin, “Influence of Co on the magnetism of HoFe 5Al 7,” J. Alloys Compd. 731, 135–142 (2018). CrossRef A. V. Andreev, D. I. Gorbunov, J. Sebek, and D. S. Neznakhin, “Influence of Co on the magnetism of HoFe 5Al 7,” J. Alloys Compd. 731, 135–142 (2018). CrossRef
11.
go back to reference D. I. Gorbunov, A. V. Andreev, D. S. Neznakhin, M. S. Henriques, J. Sebek, Y. Skourski, S. Danis, and J. Wosnitza, “Magnetic properties of DyFe 5 – xCo xAl 7: suppression of exchange interactions and magnetocrystalline anisotropy by Co substitution,” J. Alloys Compd. 741, 715–722 (2018). CrossRef D. I. Gorbunov, A. V. Andreev, D. S. Neznakhin, M. S. Henriques, J. Sebek, Y. Skourski, S. Danis, and J. Wosnitza, “Magnetic properties of DyFe 5 – xCo xAl 7: suppression of exchange interactions and magnetocrystalline anisotropy by Co substitution,” J. Alloys Compd. 741, 715–722 (2018). CrossRef
12.
go back to reference M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, and A. V. Zinin, “Magnetic and magneto-thermal properties of ferrimagnetic alloys (Er 1 ‒ xY x)(Co 0.84Fe 0.16) 2 and their dependence on the orientations of resultant and sublattice magnetizations,” J. Phys.: Condens. Matter 33, 275801 (2021). M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, and A. V. Zinin, “Magnetic and magneto-thermal properties of ferrimagnetic alloys (Er 1 ‒ xY x)(Co 0.84Fe 0.16) 2 and their dependence on the orientations of resultant and sublattice magnetizations,” J. Phys.: Condens. Matter 33, 275801 (2021).
13.
go back to reference M. S. Anikin, E. N. Tarasov, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, M. V. Ragozina, and A. V. Zinin, “Magnetic and magnetocaloric properties of Ho 1 – xY x(Co 0.84Fe 0.16) 2 compounds,” Fiz. Tverd. Tela 63, 1795–1800 (2021). M. S. Anikin, E. N. Tarasov, D. S. Neznakhin, M. A. Semkin, N. V. Selezneva, S. V. Andreev, M. V. Ragozina, and A. V. Zinin, “Magnetic and magnetocaloric properties of Ho 1 – xY x(Co 0.84Fe 0.16) 2 compounds,” Fiz. Tverd. Tela 63, 1795–1800 (2021).
14.
go back to reference P. E. Brommer, I. S. Dubenko, J. J. M. Franse, R. Z. Levitin, A. S. Markosyan, R. J. Radwański, V. V. Snegirev, and A. V. Sokolov, “Field-induced noncollinear magnetic structures in Al-stabilized RCo 2 Laves phases,” Phys. B (Amsterdam) 183, 363–368 (1993). CrossRef P. E. Brommer, I. S. Dubenko, J. J. M. Franse, R. Z. Levitin, A. S. Markosyan, R. J. Radwański, V. V. Snegirev, and A. V. Sokolov, “Field-induced noncollinear magnetic structures in Al-stabilized RCo 2 Laves phases,” Phys. B (Amsterdam) 183, 363–368 (1993). CrossRef
15.
go back to reference P. E. Brommer, I. S. Dubenko, J. J. M. Franse, F. Kayzel, N. P. Kolmakova, R. Z. Levitin, A. S. Markosyan, and A. Yu. Sokolov, “Phase transitions induced by magnetic field in ferrimagnets with one unstable magnetic subsystem,” Phys. B (Amsterdam) 211, 155–268 (1995). CrossRef P. E. Brommer, I. S. Dubenko, J. J. M. Franse, F. Kayzel, N. P. Kolmakova, R. Z. Levitin, A. S. Markosyan, and A. Yu. Sokolov, “Phase transitions induced by magnetic field in ferrimagnets with one unstable magnetic subsystem,” Phys. B (Amsterdam) 211, 155–268 (1995). CrossRef
16.
go back to reference R. Hauser, C. Kussbach, R. Grossinger, G. Hilscher, Z. Arnold, J. Kamarad, A. S. Markosyan, E. Chappel, and G. Chouteau, “On the metamagnetic state in Er 1 ‒ xT xCo 2 (T = Y, Tm) compounds,” Phys. B (Amsterdam) 294– 295, 182–185 (2001). CrossRef R. Hauser, C. Kussbach, R. Grossinger, G. Hilscher, Z. Arnold, J. Kamarad, A. S. Markosyan, E. Chappel, and G. Chouteau, “On the metamagnetic state in Er 1 ‒ xT xCo 2 (T = Y, Tm) compounds,” Phys. B (Amsterdam) 294295, 182–185 (2001). CrossRef
17.
go back to reference S. H. Kilcoyne, “The evolution of magnetic correlations and onset of magnetic order in Y(Co 1 – xFe x) 2,” Phys. B (Amsterdam) 296– 298, 660–661 (2000). CrossRef S. H. Kilcoyne, “The evolution of magnetic correlations and onset of magnetic order in Y(Co 1 – xFe x) 2,” Phys. B (Amsterdam) 296298, 660–661 (2000). CrossRef
18.
go back to reference H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, and V. K. Pecharsky, “Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements,” J. Magn. Magn. Mater. 458, 301–309 (2018). CrossRef H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, and V. K. Pecharsky, “Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements,” J. Magn. Magn. Mater. 458, 301–309 (2018). CrossRef
19.
go back to reference M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, M. A. Semkin, A. S. Volegov, A. A. Inishev, and A. V. Zinin, “Features of magnetocaloric effect in Er(Co–Fe) 2 laves phases,” KnE Mater. Sci. 2016, 5–10 (2016). M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, M. A. Semkin, A. S. Volegov, A. A. Inishev, and A. V. Zinin, “Features of magnetocaloric effect in Er(Co–Fe) 2 laves phases,” KnE Mater. Sci. 2016, 5–10 (2016).
20.
go back to reference A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare earth magnets,” Usp. Fiz. Nauk 458, 301–309 (2018). A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare earth magnets,” Usp. Fiz. Nauk 458, 301–309 (2018).
21.
go back to reference E. G. Gerasimov, A. A. Inishev, N. V. Mushnikov, P. B. Terentev, V. S. Gaviko, and M. S. Anikin, “Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er 0.65Gd 0.35Co 2Mn x compounds,” Intermetallics 140, 107386 (2022). CrossRef E. G. Gerasimov, A. A. Inishev, N. V. Mushnikov, P. B. Terentev, V. S. Gaviko, and M. S. Anikin, “Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er 0.65Gd 0.35Co 2Mn x compounds,” Intermetallics 140, 107386 (2022). CrossRef
Metadata
Title
Magnetic and Magnetocaloric Properties of the Tm1 – xYx(Co0.84Fe0.16)2 Compounds
Authors
M. S. Anikin
E. N. Tarasov
D. S. Neznakhin
M. A. Semkin
S. V. Andreev
N. V. Selezneva
M. V. Ragozina
E. V. Potapov
A. V. Zinin
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040032