Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic Hysteresis Properties and Microstructure of High-Coercivity (Nd,Dy)–Fe–B Magnets with Dy less than 10 wt % and Low Oxygen

Authors: D. Yu. Vasilenko, A. V. Shitov, A. G. Popov, V. S. Gaviko, D. Yu. Bratushev, K. I. Podkorytov, O. A. Golovnya

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

Magnetic properties and microstructure of (Nd,Dy)–Fe–B magnets with Dy in the range from 0 to 10.3 wt % and oxygen less than 0.26 wt % are studied. High-coercivity magnets with Dy 8 wt % have maximum energy density product (BH)max ≥ 35 MG Oe and coercivity МНс ≥ 30 kOe; their operating temperature can be as high as 180°С. Phase composition and structure of (Nd,Dy)–Fe–B magnets were studied by X-ray diffraction and scanning electron microscopy. In addition to the main (Nd,Dy)2Fe14B phase and (Nd,Dy)2O3 oxide, in triple junctions, there are two (Nd, Dy, Fe, М)Ox phases with fcc structure (symmetry group 225, Fm\(\bar {3}\)m) but with different content of O, Fe, and additional elements M (M = Co, Cu, Ga). It was shown that the total content of (Nd,Dy,Fe,М)Ox oxides grew with the total concentrations of oxygen and dysprosium in magnets.
Literature
1.
go back to reference S. Sugimoto, “Current status and recent topics of rare-earth permanent magnets,” J. Phys. D: Appl. Phys. 44, No. 6 (2011). S. Sugimoto, “Current status and recent topics of rare-earth permanent magnets,” J. Phys. D: Appl. Phys. 44, No. 6 (2011).
2.
go back to reference K. Hono and H. Sepehri-Amin, “Strategy for high-coercivity Nd–Fe–B magnets,” Scr. Mater. 67, No. 6, 530–535 (2012). CrossRef K. Hono and H. Sepehri-Amin, “Strategy for high-coercivity Nd–Fe–B magnets,” Scr. Mater. 67, No. 6, 530–535 (2012). CrossRef
3.
go back to reference H. Nakamura, “The current and future status of rare earth permanent magnets,” Scr. Mater. 154, 273–276 (2018). CrossRef H. Nakamura, “The current and future status of rare earth permanent magnets,” Scr. Mater. 154, 273–276 (2018). CrossRef
4.
go back to reference B. P. Hu, E. Niu, Y. G. Zhao, G. A. Chen, Z. A. Chen, G. S. Jin, J. Zhang, X. L. Rao, and Z. X. Wang, “Study of sintered Nd–Fe–B magnet with high performance of Hcj (kOe) (BH)max (MG Oe) > 75,” AIP Adv. 3, No. 4, 1–17 (2013). B. P. Hu, E. Niu, Y. G. Zhao, G. A. Chen, Z. A. Chen, G. S. Jin, J. Zhang, X. L. Rao, and Z. X. Wang, “Study of sintered Nd–Fe–B magnet with high performance of Hcj (kOe) (BH)max (MG Oe) > 75,” AIP Adv. 3, No. 4, 1–17 (2013).
5.
go back to reference M. Sagawa, S. Hirosawa, K. Tokuhara, H. Yamamoto, S. Fujimura, Y. Tsubokawa, and R. Shimizu, “Dependence of coercivity on the anisotropy field in the Nd2Fe14B-type sintered magnets,” J. Appl. Phys. 61, No. 8, 3559–3561 (1987). CrossRef M. Sagawa, S. Hirosawa, K. Tokuhara, H. Yamamoto, S. Fujimura, Y. Tsubokawa, and R. Shimizu, “Dependence of coercivity on the anisotropy field in the Nd2Fe14B-type sintered magnets,” J. Appl. Phys. 61, No. 8, 3559–3561 (1987). CrossRef
6.
go back to reference M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, “Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds,” IEEE Trans. Magn. 20, No. 5, 1584–1589 (1986). CrossRef M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, “Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds,” IEEE Trans. Magn. 20, No. 5, 1584–1589 (1986). CrossRef
7.
go back to reference M. Tokunaga, M. Tobise, N. Meguro, and H. Harada, “Microstructure of R–Fe–B sintered magnet,” IEEE Trans. Magn. 22, No. 5, 904–909 (1986). CrossRef M. Tokunaga, M. Tobise, N. Meguro, and H. Harada, “Microstructure of R–Fe–B sintered magnet,” IEEE Trans. Magn. 22, No. 5, 904–909 (1986). CrossRef
8.
go back to reference A. S. Kim and F. E. Camp, “High performance NdFeB magnets (invited),” J. Appl. Phys. 79, No. 8, Part 2A, 5035–5039 (1996). A. S. Kim and F. E. Camp, “High performance NdFeB magnets (invited),” J. Appl. Phys. 79, No. 8, Part 2A, 5035–5039 (1996).
9.
go back to reference G. H. Yan, R. J. Chen, Y. Ding, S. Guo, D. Lee, and A. R. Yan, “The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability,” J. Phys. Conf. Ser. 266, No. 1 (2011). G. H. Yan, R. J. Chen, Y. Ding, S. Guo, D. Lee, and A. R. Yan, “The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability,” J. Phys. Conf. Ser. 266, No. 1 (2011).
10.
go back to reference J. Wang, H. Feng, A. Li, Y. Li, M. Zhu, and W. Li, “Oxide evolution in NdDy–Fe–B magnet during aging process,” J. Rare Earths 30, No. 10, 1020–1023 (2012). CrossRef J. Wang, H. Feng, A. Li, Y. Li, M. Zhu, and W. Li, “Oxide evolution in NdDy–Fe–B magnet during aging process,” J. Rare Earths 30, No. 10, 1020–1023 (2012). CrossRef
11.
go back to reference D. Yu. Vasilenko, A. V. Shitov, A. V. Vlasyuga, A. G. Popov, N. V. Kudrevatykh, and N. V. Pechishcheva, “Microstructure and properties of Nd–Fe–B alloys produced by strip casting and of permanent magnets fabricated from them,” Met. Sci. Heat Treat. 56, No. 11, 585–590 (2014). CrossRef D. Yu. Vasilenko, A. V. Shitov, A. V. Vlasyuga, A. G. Popov, N. V. Kudrevatykh, and N. V. Pechishcheva, “Microstructure and properties of Nd–Fe–B alloys produced by strip casting and of permanent magnets fabricated from them,” Met. Sci. Heat Treat. 56, No. 11, 585–590 (2014). CrossRef
12.
go back to reference Q. Zhou, W. Li, Y. Hong, L. Zhao, X. Zhong, H. Yu, L. Huang, and Z. Liu, “Microstructure improvement related coercivity enhancement for sintered NdFeB magnets after optimized additional heat treatment,” J. Rare Earths 36, No. 4, 379–384 (2018). CrossRef Q. Zhou, W. Li, Y. Hong, L. Zhao, X. Zhong, H. Yu, L. Huang, and Z. Liu, “Microstructure improvement related coercivity enhancement for sintered NdFeB magnets after optimized additional heat treatment,” J. Rare Earths 36, No. 4, 379–384 (2018). CrossRef
13.
go back to reference W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, and K. Hono, “Distribution of Dy in high-coercivity (Nd,Dy)–Fe–B sintered magnet,” Acta Mater. 59, No. 8, 3061–3069 (2011). CrossRef W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, and K. Hono, “Distribution of Dy in high-coercivity (Nd,Dy)–Fe–B sintered magnet,” Acta Mater. 59, No. 8, 3061–3069 (2011). CrossRef
14.
go back to reference Z. Hu, H. Qu, D. Ma, C. Luo, and H. Wang, “Influence of dysprosium substitution on magnetic and mechanical properties of high intrinsic coercivity Nd–Fe–B magnets prepared by double-alloy powder mixed method,” J. Rare Earths 34, No. 7, 689–694 (2016). CrossRef Z. Hu, H. Qu, D. Ma, C. Luo, and H. Wang, “Influence of dysprosium substitution on magnetic and mechanical properties of high intrinsic coercivity Nd–Fe–B magnets prepared by double-alloy powder mixed method,” J. Rare Earths 34, No. 7, 689–694 (2016). CrossRef
15.
go back to reference A. A. Lukin, N. B. Kol’chugina, G. S. Burkhanov, N. E. Klyueva, and K. Skotnitseva, “Significance of terbium hydride additions in the microstructure formation and magnetic properties of sintered Nd–Pr–Dy–Fe–B magnets,” Fiz. Khim. Obr. Mater., No. 1, 70–73 (2012). A. A. Lukin, N. B. Kol’chugina, G. S. Burkhanov, N. E. Klyueva, and K. Skotnitseva, “Significance of terbium hydride additions in the microstructure formation and magnetic properties of sintered Nd–Pr–Dy–Fe–B magnets,” Fiz. Khim. Obr. Mater., No. 1, 70–73 (2012).
16.
go back to reference F. Yang, L. Guo, P. Li, X. Zhao, Y. Sui, Z. Guo, and X. Gao, “Boundary structure modification and magnetic properties of Nd–Fe–B sintered magnets by co-doping with Dy 2O 3/S powders,” J. Magn. Magn. Mater. 429, 117–123 (2017). CrossRef F. Yang, L. Guo, P. Li, X. Zhao, Y. Sui, Z. Guo, and X. Gao, “Boundary structure modification and magnetic properties of Nd–Fe–B sintered magnets by co-doping with Dy 2O 3/S powders,” J. Magn. Magn. Mater. 429, 117–123 (2017). CrossRef
17.
go back to reference G. S. Burkhanov, N. B. Kolchugina, A. A. Lukin, Y. S. Koshkidko, J. Cwik, K. Skotnicova, and V. Sitnov, “Structure and magnetic properties of Nd–Fe–B magnets prepared from DyH 2-containing powder mixtures,” Inorg. Mater.: Appl. Res. 9, No. 3, 509–516 (2018). CrossRef G. S. Burkhanov, N. B. Kolchugina, A. A. Lukin, Y. S. Koshkidko, J. Cwik, K. Skotnicova, and V. Sitnov, “Structure and magnetic properties of Nd–Fe–B magnets prepared from DyH 2-containing powder mixtures,” Inorg. Mater.: Appl. Res. 9, No. 3, 509–516 (2018). CrossRef
18.
go back to reference L. Liang, T. Ma, P. Zhang, J. Jin, and M. Yan, “Coercivity enhancement of NdFeB sintered magnets by low melting point Dy 32.5Fe 62Cu 5.5 alloy modification,” J. Magn. Magn. Mater. 355, 131–135 (2014). CrossRef L. Liang, T. Ma, P. Zhang, J. Jin, and M. Yan, “Coercivity enhancement of NdFeB sintered magnets by low melting point Dy 32.5Fe 62Cu 5.5 alloy modification,” J. Magn. Magn. Mater. 355, 131–135 (2014). CrossRef
19.
go back to reference X. Zhang, S. Guo, C. Yan, L. Cai, R. Chen, D. Lee, and A. Yan, “Improvement of the thermal stability of sintered Nd–Fe–B magnets by intergranular addition of Dy 82.3Co 17.7,” J. Appl. Phys. 115, No. 17, 3–6 (2014). X. Zhang, S. Guo, C. Yan, L. Cai, R. Chen, D. Lee, and A. Yan, “Improvement of the thermal stability of sintered Nd–Fe–B magnets by intergranular addition of Dy 82.3Co 17.7,” J. Appl. Phys. 115, No. 17, 3–6 (2014).
20.
go back to reference X. Li, S. Liu, X. Cao, B. Zhou, L. Chen, A. Yan, and G. Yan, “Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy,” J. Magn. Magn. Mater. 407, 247–251 (2016). CrossRef X. Li, S. Liu, X. Cao, B. Zhou, L. Chen, A. Yan, and G. Yan, “Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy,” J. Magn. Magn. Mater. 407, 247–251 (2016). CrossRef
21.
go back to reference B. Zhou, X. Li, X. Liang, G. Yan, K. Chen, and A. Yan, “Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd–Fe–B magnets with Dy 80Al 20 addition,” J. Magn. Magn. Mater. 429, 257–262 (2017). CrossRef B. Zhou, X. Li, X. Liang, G. Yan, K. Chen, and A. Yan, “Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd–Fe–B magnets with Dy 80Al 20 addition,” J. Magn. Magn. Mater. 429, 257–262 (2017). CrossRef
22.
go back to reference K. Hirota, H. Nakamura, T. Minowa, and M. Honshima, “Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets,” IEEE Trans Magn. 42, No. 10, 2909–2911 (2006). CrossRef K. Hirota, H. Nakamura, T. Minowa, and M. Honshima, “Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets,” IEEE Trans Magn. 42, No. 10, 2909–2911 (2006). CrossRef
23.
go back to reference N. Oono, M. Sagawa, R. Kasada, H. Matsui, and A. Kimura, “Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy,” J. Magn. Magn. Mater. 323, No. 3–4, 297–300 (2011). CrossRef N. Oono, M. Sagawa, R. Kasada, H. Matsui, and A. Kimura, “Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy,” J. Magn. Magn. Mater. 323, No. 3–4, 297–300 (2011). CrossRef
24.
go back to reference A. G. Popov, D. Yu. Vasilenko, T. Z. Puzanova, A. V. Shitov, and A. V. Vlasyuga, “Effect of diffusion annealing on the hysteretic properties of sintered Nd‒Fe–B magnets,” Phys. Met. Metallogr. 111, No. 5, 471–478 (2011). CrossRef A. G. Popov, D. Yu. Vasilenko, T. Z. Puzanova, A. V. Shitov, and A. V. Vlasyuga, “Effect of diffusion annealing on the hysteretic properties of sintered Nd‒Fe–B magnets,” Phys. Met. Metallogr. 111, No. 5, 471–478 (2011). CrossRef
25.
go back to reference X. J. Cao, L. Chen, S. Guo, X. B. Li, P. P. Yi, A. R. Yan, and G. L. Yan, “Coercivity enhancement of sintered Nd-Fe-B magnets by efficiently diffusing DyF 3 based on electrophoretic deposition,” J. Alloys Compd. 631, 315–320 (2015). CrossRef X. J. Cao, L. Chen, S. Guo, X. B. Li, P. P. Yi, A. R. Yan, and G. L. Yan, “Coercivity enhancement of sintered Nd-Fe-B magnets by efficiently diffusing DyF 3 based on electrophoretic deposition,” J. Alloys Compd. 631, 315–320 (2015). CrossRef
26.
go back to reference K. Löewe, C. Brombacher, M. Katter, and O. Gutfleisch, “Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets,” Acta Mater. 83, 248–255 (2015). CrossRef K. Löewe, C. Brombacher, M. Katter, and O. Gutfleisch, “Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets,” Acta Mater. 83, 248–255 (2015). CrossRef
27.
go back to reference X. Cao, L. Chen, S. Guo, F. Fan, R. Chen, and A. Yan, “Effect of rare earth content on TbF 3 diffusion in sintered Nd–Fe–B magnets by electrophoretic deposition,” Scr. Mater. 131, 24–28 (2017). CrossRef X. Cao, L. Chen, S. Guo, F. Fan, R. Chen, and A. Yan, “Effect of rare earth content on TbF 3 diffusion in sintered Nd–Fe–B magnets by electrophoretic deposition,” Scr. Mater. 131, 24–28 (2017). CrossRef
28.
go back to reference S. Hu, K. Peng, and H. Chen, “Influence of annealing temperature on the Dy diffusion process in NdFeB magnets,” J. Magn. Magn. Mater. 426, 340–346 (2017). CrossRef S. Hu, K. Peng, and H. Chen, “Influence of annealing temperature on the Dy diffusion process in NdFeB magnets,” J. Magn. Magn. Mater. 426, 340–346 (2017). CrossRef
29.
go back to reference J. Di, G. Ding, X. Tang, X. Yang, S. Guo, R. Chen, and A. Yan, “Highly efficient Tb-utilization in sintered Nd–Fe–B magnets by Al added TbH 2 grain boundary diffusion,” Scr. Mater. 155, 50–53 (2018). CrossRef J. Di, G. Ding, X. Tang, X. Yang, S. Guo, R. Chen, and A. Yan, “Highly efficient Tb-utilization in sintered Nd–Fe–B magnets by Al added TbH 2 grain boundary diffusion,” Scr. Mater. 155, 50–53 (2018). CrossRef
30.
go back to reference T. H. Kim, T. T. Sasaki, T. Ohkubo, Y. Takada, A. Kato, Y. Kaneko, and K. Hono, “Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing Nd–Fe–B sintered magnets,” Acta Mater. 172, 139–149 (2019). CrossRef T. H. Kim, T. T. Sasaki, T. Ohkubo, Y. Takada, A. Kato, Y. Kaneko, and K. Hono, “Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing Nd–Fe–B sintered magnets,” Acta Mater. 172, 139–149 (2019). CrossRef
31.
go back to reference S. Kim, D. S. Ko, H. S. Lee, D. Kim, J. W. Roh, and W. Lee, “Enhancing the coercivity of Nd–Fe–B sintered magnets by consecutive heat treatment–induced formation of Tb-diffused microstructures,” J. Alloys Compd. 780, 574–580 (2019). CrossRef S. Kim, D. S. Ko, H. S. Lee, D. Kim, J. W. Roh, and W. Lee, “Enhancing the coercivity of Nd–Fe–B sintered magnets by consecutive heat treatment–induced formation of Tb-diffused microstructures,” J. Alloys Compd. 780, 574–580 (2019). CrossRef
32.
go back to reference W. Zhu, Y. Luo, Z. Wang, X. Bai, H. Peng, and D. Yu, “Magnetic properties and microstructures of terbium coated and grain boundary diffusion treated sintered Nd–Fe–B magnets by magnetron sputtering,” J. Rare Earths 39, No. 2, 167–173 (2021). CrossRef W. Zhu, Y. Luo, Z. Wang, X. Bai, H. Peng, and D. Yu, “Magnetic properties and microstructures of terbium coated and grain boundary diffusion treated sintered Nd–Fe–B magnets by magnetron sputtering,” J. Rare Earths 39, No. 2, 167–173 (2021). CrossRef
33.
go back to reference D. Yu. Vasilenko, A. V. Shitov, D. Yu. Bratushev, K. I. Podkorytov, V. S. Gaviko, O. A. Golovnya, and A. G. Popov, “Magnetic hysteresis properties and microstructure of high-energy (Nd,Dy)–Fe–B magnets with a low oxygen content,” Phys. Met. Metallogr. 122, No. 12, 1261–1270 (2021). D. Yu. Vasilenko, A. V. Shitov, D. Yu. Bratushev, K. I. Podkorytov, V. S. Gaviko, O. A. Golovnya, and A. G. Popov, “Magnetic hysteresis properties and microstructure of high-energy (Nd,Dy)–Fe–B magnets with a low oxygen content,” Phys. Met. Metallogr. 122, No. 12, 1261–1270 (2021).
34.
go back to reference H. Sepehri-Amin, T. Ohkubo, T. Shima, and K. Hono, “Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet,” Acta Mater. 60, No. 3, 819–830 (2012). CrossRef H. Sepehri-Amin, T. Ohkubo, T. Shima, and K. Hono, “Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet,” Acta Mater. 60, No. 3, 819–830 (2012). CrossRef
35.
go back to reference T. T. Sasaki, T. Ohkubo, and K. Hono, “Structure and chemical compositions of the grain boundary phase in Nd–Fe–B sintered magnets,” Acta Mater. 115, 269–277 (2016). CrossRef T. T. Sasaki, T. Ohkubo, and K. Hono, “Structure and chemical compositions of the grain boundary phase in Nd–Fe–B sintered magnets,” Acta Mater. 115, 269–277 (2016). CrossRef
36.
go back to reference W. Mo, L. Zhang, Q. Liu, A. Shan, J. Wu, and M. Komuro, “Dependence of the crystal structure of the Nd-rich phase on oxygen content in an Nd–Fe–B sintered magnet,” Scr. Mater. 59, No. 2, 179–182 (2008). CrossRef W. Mo, L. Zhang, Q. Liu, A. Shan, J. Wu, and M. Komuro, “Dependence of the crystal structure of the Nd-rich phase on oxygen content in an Nd–Fe–B sintered magnet,” Scr. Mater. 59, No. 2, 179–182 (2008). CrossRef
37.
go back to reference T. T. Sasaki, T. Ohkubo, and K. Hono, “Microstructure of Nd–Fe–B sintered magnets-structure of grain boundaries and interface,” Nippon Kinzoku Gakkaishi 81, No. 1, 2–10 (2017). T. T. Sasaki, T. Ohkubo, and K. Hono, “Microstructure of Nd–Fe–B sintered magnets-structure of grain boundaries and interface,” Nippon Kinzoku Gakkaishi 81, No. 1, 2–10 (2017).
38.
go back to reference O. M. Ragg and I. R. Harris, “A study of the effects of heat treatment on the microstructures and magnetic properties of Cu-added NdFeB type sintered magnets,” J. Alloys Compd. 209, Nos. 1–2, 125–133 (1994). CrossRef O. M. Ragg and I. R. Harris, “A study of the effects of heat treatment on the microstructures and magnetic properties of Cu-added NdFeB type sintered magnets,” J. Alloys Compd. 209, Nos. 1–2, 125–133 (1994). CrossRef
39.
go back to reference B. E. Davies, R. S. Mottram, and I. R. Harris, “Recent developments in the sintering of NdFeB,” Mater. Chem. Phys. 67, No. 1–3, 272–281 (2001). CrossRef B. E. Davies, R. S. Mottram, and I. R. Harris, “Recent developments in the sintering of NdFeB,” Mater. Chem. Phys. 67, No. 1–3, 272–281 (2001). CrossRef
40.
go back to reference B. E. Davies, A. J. Williams, and I. R. Harris, “The use of contact dilatometry to assess the effect to rare-earth content on the sintering characteristics of NdFeB magnets,” Proc. 18th Int. Workshop on High Performance Magnets and their Applications (2004), pp. 103–105. B. E. Davies, A. J. Williams, and I. R. Harris, “The use of contact dilatometry to assess the effect to rare-earth content on the sintering characteristics of NdFeB magnets,” Proc. 18th Int. Workshop on High Performance Magnets and their Applications (2004), pp. 103–105.
41.
go back to reference A. Jayaraman, “Solid-liquid and solid-solid transformations in rare-earth metals at high pressures,” Phys. Rev. A 139, No. 3, A690–A696 (1965). CrossRef A. Jayaraman, “Solid-liquid and solid-solid transformations in rare-earth metals at high pressures,” Phys. Rev. A 139, No. 3, A690–A696 (1965). CrossRef
42.
go back to reference A. Nakaue, “Studies of the pressure-temperature phase diagram of Nd, Sm, Gd and Dy,” J. Less-Common Met. 60, 47–58 (1978). CrossRef A. Nakaue, “Studies of the pressure-temperature phase diagram of Nd, Sm, Gd and Dy,” J. Less-Common Met. 60, 47–58 (1978). CrossRef
43.
go back to reference Y. Murakami, T. T. Sasaki, T. Ohkubo, and K. Hono, “Strain measurements from Nd 2Fe 14B grains in sintered magnets using artificial moiré fringes,” Acta Mater. 101, 101–106 (2015). CrossRef Y. Murakami, T. T. Sasaki, T. Ohkubo, and K. Hono, “Strain measurements from Nd 2Fe 14B grains in sintered magnets using artificial moiré fringes,” Acta Mater. 101, 101–106 (2015). CrossRef
44.
go back to reference N. Tsuji, H. Okazaki, W. Ueno, Y. Kotani, D. Billington, A. Yasui, S. Kawaguchi, K. Sugimoto, K. Toyoki, T. Fukagawa, T. Nishiuchi, Y. Gohda, S. Hirosawa, K. Hono, and T. Nakamura, “Temperature dependence of the crystal structures and phase fractions of secondary phases in a Nd–Fe–B sintered magnet,” Acta Mater. 154, 25–32 (2018). CrossRef N. Tsuji, H. Okazaki, W. Ueno, Y. Kotani, D. Billington, A. Yasui, S. Kawaguchi, K. Sugimoto, K. Toyoki, T. Fukagawa, T. Nishiuchi, Y. Gohda, S. Hirosawa, K. Hono, and T. Nakamura, “Temperature dependence of the crystal structures and phase fractions of secondary phases in a Nd–Fe–B sintered magnet,” Acta Mater. 154, 25–32 (2018). CrossRef
45.
go back to reference GOST R 52956-2008 Sintered Hard Magnetic Materials Based on Neodymium–Iron–Boron Alloy. Classification. Main Parameters (2009), pp. 1–8. GOST R 52956-2008 Sintered Hard Magnetic Materials Based on Neodymium–Iron–Boron Alloy. Classification. Main Parameters (2009), pp. 1–8.
Metadata
Title
Magnetic Hysteresis Properties and Microstructure of High-Coercivity (Nd,Dy)–Fe–B Magnets with Dy less than 10 wt % and Low Oxygen
Authors
D. Yu. Vasilenko
A. V. Shitov
A. G. Popov
V. S. Gaviko
D. Yu. Bratushev
K. I. Podkorytov
O. A. Golovnya
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020107