Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetocaloric Effect and Magnetization of Gadolinium in Quasi-Stationary and Pulsed Magnetic Fields up to 40 kOe

Authors: A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, V. I. Val’kov, B. M. Todris, S. V. Taskaev

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

This study is aimed at developing new experimental methods for investigating the magnetic and thermodynamic properties of solid magnetic materials near phase transitions in high magnetic fields with the use of polycrystalline Gd as an example. The magnetocaloric effect and the magnetization of Gd samples at ambient temperatures in quasi-stationary and pulsed magnetic fields up to 40 kOe are simultaneously measured using two different methods. The results of experiments obtained by different methods are compared, and the effect of eddy currents on the results is evaluated. The maximum value obtained for the magnetocaloric effect in Gd samples is ΔT = 7.3 K at T0 = 299.3 K in a pulsed magnetic field of 40 kOe.
Literature
1.
go back to reference V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef
2.
go back to reference G. V. Brown, “Magnetic heat pumping near room temperature,” J. Appl. Phys. 47, 3673–3680 (1976). CrossRef G. V. Brown, “Magnetic heat pumping near room temperature,” J. Appl. Phys. 47, 3673–3680 (1976). CrossRef
3.
go back to reference S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloy Compd. 754, 207–214 (2018). CrossRef S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloy Compd. 754, 207–214 (2018). CrossRef
4.
go back to reference S. Taskaev, K. Skokov, V. Khovaylo, M. Ulyanov, D. Bataev, D. Karpenkov, I. Radulov, A. Dyakonov, and O. Gutfleisch, “Magnetocaloric effect in cold rolled foils of Gd 100 – xIn x ( x = 0, 1, 3),” J. Magn. Magn. Mater. 459, 46–48 (2018). CrossRef S. Taskaev, K. Skokov, V. Khovaylo, M. Ulyanov, D. Bataev, D. Karpenkov, I. Radulov, A. Dyakonov, and O. Gutfleisch, “Magnetocaloric effect in cold rolled foils of Gd 100 – xIn x ( x = 0, 1, 3),” J. Magn. Magn. Mater. 459, 46–48 (2018). CrossRef
5.
go back to reference S. Taskaev, K. Skokov, D. Karpenkov, V. Khovaylo, M. Ulyanov, D. Bataev, A. Dyakonov, A. Fazlitdinova, and O. Gutfleisch, “The effect of plastic deformation on magnetic and magnetocaloric properties of Gd–B alloys,” J. Magn. Magn. Mater. 442, 360–363 (2017). CrossRef S. Taskaev, K. Skokov, D. Karpenkov, V. Khovaylo, M. Ulyanov, D. Bataev, A. Dyakonov, A. Fazlitdinova, and O. Gutfleisch, “The effect of plastic deformation on magnetic and magnetocaloric properties of Gd–B alloys,” J. Magn. Magn. Mater. 442, 360–363 (2017). CrossRef
6.
go back to reference S. Taskaev, K. Skokov, V. Khovaylo, V. Buchelnikov, A. Pellenen, D. Karpenkov, M. Ulyanov, D. Bataev, A. Usenko, M. Lyange, and O. Gutfleisch, “Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets,” J. Appl. Phys. 117, 123914 (2015). CrossRef S. Taskaev, K. Skokov, V. Khovaylo, V. Buchelnikov, A. Pellenen, D. Karpenkov, M. Ulyanov, D. Bataev, A. Usenko, M. Lyange, and O. Gutfleisch, “Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets,” J. Appl. Phys. 117, 123914 (2015). CrossRef
7.
go back to reference S. V. Taskaev, V. D. Buchelnikov, A. P. Pellenen, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, D. S. Bataev, and O. Gutfleisch, “Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons.,” J. Appl. Phys. 113, 17A933 (2013). S. V. Taskaev, V. D. Buchelnikov, A. P. Pellenen, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, D. S. Bataev, and O. Gutfleisch, “Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons.,” J. Appl. Phys. 113, 17A933 (2013).
8.
go back to reference S. V. Taskaev, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, A. P. Pellenen, V. D. Buchelnikov, and O. Gutfleisch, “Giant induced anisotropy ruins the magnetocaloric effect in gadolinium,” J. Magn. Magn. Mater. 331, 33–36 (2013). CrossRef S. V. Taskaev, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, A. P. Pellenen, V. D. Buchelnikov, and O. Gutfleisch, “Giant induced anisotropy ruins the magnetocaloric effect in gadolinium,” J. Magn. Magn. Mater. 331, 33–36 (2013). CrossRef
9.
go back to reference S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478 (1998). CrossRef S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478 (1998). CrossRef
10.
go back to reference G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, “Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity,” Appl. Phys. Lett. 104, 242402 (2014). CrossRef G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, “Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity,” Appl. Phys. Lett. 104, 242402 (2014). CrossRef
11.
go back to reference Y. S. Koshkid’ko, J. Ćwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef Y. S. Koshkid’ko, J. Ćwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef
12.
go back to reference A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, and I. S. Tereshina, “Thermodynamic and relaxation processes near Curie point in gadolinium,” Solid State Phenom. 215, 113–118 (2014). CrossRef A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, and I. S. Tereshina, “Thermodynamic and relaxation processes near Curie point in gadolinium,” Solid State Phenom. 215, 113–118 (2014). CrossRef
13.
go back to reference A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Magnetocaloric effect of gadolinium at adiabatic and quasi-isothermal conditions in high magnetic fields,” Solid State Phenom. 233– 234, 216–219 (2015). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Magnetocaloric effect of gadolinium at adiabatic and quasi-isothermal conditions in high magnetic fields,” Solid State Phenom. 233234, 216–219 (2015). CrossRef
14.
go back to reference T. Kihara, Y. Kohama, Y. Hashimoto, S. Katsumoto, and M. Tokunaga, “Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T,” Rev. Sci. Instrum. 84, 074901 (2013). CrossRef T. Kihara, Y. Kohama, Y. Hashimoto, S. Katsumoto, and M. Tokunaga, “Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T,” Rev. Sci. Instrum. 84, 074901 (2013). CrossRef
15.
go back to reference A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). CrossRef
16.
go back to reference A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Val’kov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Physical and Mathematical Journal 5, 537–544 (2020). A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Val’kov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Physical and Mathematical Journal 5, 537–544 (2020).
17.
go back to reference L. N. Butvina, O. V. Sereda, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Single-mode microstructured optical fiber for the middle infrared,” Opt. Lett. 32, 334–336 (2007). CrossRef L. N. Butvina, O. V. Sereda, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Single-mode microstructured optical fiber for the middle infrared,” Opt. Lett. 32, 334–336 (2007). CrossRef
18.
go back to reference L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Large-mode-area single-mode microstructured optical fibre for the mid-IR region,” Quantum Electron. 39 (3), 283 (2009). CrossRef L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Large-mode-area single-mode microstructured optical fibre for the mid-IR region,” Quantum Electron. 39 (3), 283 (2009). CrossRef
19.
go back to reference V. P. Ponomarenko, “Cadmium mercury telluride and the new generation of photoelectronic devices,” Phys.-Usp. 46, 629–644 (2003). CrossRef V. P. Ponomarenko, “Cadmium mercury telluride and the new generation of photoelectronic devices,” Phys.-Usp. 46, 629–644 (2003). CrossRef
20.
go back to reference A. F. Vul’ and B. M. Todris, Pulse Magnetometer for Measurements in Strong Magnetic Fields under Pressure (Donetsk Physico-Technical Institute, of Ukrainian Academy of Sciences, Donetsk, 1988) [in Russian]. A. F. Vul’ and B. M. Todris, Pulse Magnetometer for Measurements in Strong Magnetic Fields under Pressure (Donetsk Physico-Technical Institute, of Ukrainian Academy of Sciences, Donetsk, 1988) [in Russian].
21.
go back to reference E. T. Dilmieva, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Experimental simulation of a magnetic refrigeration cycle in high magnetic fields,” Phys. Solid State 58, 81–85 (2016). CrossRef E. T. Dilmieva, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Experimental simulation of a magnetic refrigeration cycle in high magnetic fields,” Phys. Solid State 58, 81–85 (2016). CrossRef
22.
go back to reference W. Viehmann, “Magnetometer based on the Hall Effect,” Rev. Sci. Instrum. 33, 537–539 (1962). CrossRef W. Viehmann, “Magnetometer based on the Hall Effect,” Rev. Sci. Instrum. 33, 537–539 (1962). CrossRef
23.
go back to reference V. I. Nizhankovskii and V. I. Tsebro, “International laboratory of high magnetic fields and low temperatures: how it was set up and how it evolved,” Phys.-Usp. 56, 204–210 (2013). CrossRef V. I. Nizhankovskii and V. I. Tsebro, “International laboratory of high magnetic fields and low temperatures: how it was set up and how it evolved,” Phys.-Usp. 56, 204–210 (2013). CrossRef
24.
go back to reference J. Lammeraner and M. Štafl, Eddy Currents (Iliffe Books, London, 1966). J. Lammeraner and M. Štafl, Eddy Currents (Iliffe Books, London, 1966).
25.
go back to reference R. V. Colvin, S. Legvold, and F. H. Spedding, “Electrical resistivity of the heavy rare-earth metals,” Phys. Rev. 120, 741–745 (1960). CrossRef R. V. Colvin, S. Legvold, and F. H. Spedding, “Electrical resistivity of the heavy rare-earth metals,” Phys. Rev. 120, 741–745 (1960). CrossRef
Metadata
Title
Magnetocaloric Effect and Magnetization of Gadolinium in Quasi-Stationary and Pulsed Magnetic Fields up to 40 kOe
Authors
A. P. Kamantsev
V. V. Koledov
V. G. Shavrov
L. N. Butvina
A. V. Golovchan
V. I. Val’kov
B. M. Todris
S. V. Taskaev
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040068