Skip to main content
Top

2013 | OriginalPaper | Chapter

Magnetorheological Elastomers and Their Applications

Authors : W. H. Li, X. Z. Zhang, H. Du

Published in: Advances in Elastomers I

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetorheological elastomers (MRE) are smart materials whose modulus or mechanical performances can be controlled by an external magnetic field. In this chapter, the current research on the MRE materials fabrication, performance characterisation, modelling and applications is reviewed and discussed. Either anistropic or isotropic or MRE materials are fabricated by different curing conditions where magnetic field is applied or not. Anistropic MREs exhibit higher MR effects than isotropic MREs. Both steady-state and dynamic performances were studied through both experimental and theoretical approaches. The modelling approaches were developed to predict mechanical performances of MREs with both simple and complex structures. The sensing capabilities of MREs under different loading conditions were also investigated. The review also includes recent representative MRE applications such as adaptive tuned vibration absorbers and novel force sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics. 10, 555–569 (2000)CrossRef Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics. 10, 555–569 (2000)CrossRef
2.
go back to reference Shiga, T., Okada, A., Kurauchi, T.: Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 58, 787–792 (1995)CrossRef Shiga, T., Okada, A., Kurauchi, T.: Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 58, 787–792 (1995)CrossRef
3.
go back to reference Jolly, M.R., Carlson, J.D., Munoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomers composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)CrossRef Jolly, M.R., Carlson, J.D., Munoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomers composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)CrossRef
4.
go back to reference Ginder, J.M., Clark, S.M., Schlotter, W.F., Nichols, M.E.: Magnetostrictive phenomena in magnetorheological elastomers. Int. J. Mod. Phys. B. 16(17–18), 2412–2418 (2002)CrossRef Ginder, J.M., Clark, S.M., Schlotter, W.F., Nichols, M.E.: Magnetostrictive phenomena in magnetorheological elastomers. Int. J. Mod. Phys. B. 16(17–18), 2412–2418 (2002)CrossRef
5.
go back to reference Zhou, G.Y.: Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 12, 139–146 (2003)CrossRef Zhou, G.Y.: Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 12, 139–146 (2003)CrossRef
6.
go back to reference Chen, L., Gong, X.L., Jiang, W.Q., et al.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42, 5483–5489 (2007)CrossRef Chen, L., Gong, X.L., Jiang, W.Q., et al.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42, 5483–5489 (2007)CrossRef
7.
go back to reference Hu, Y., Wang, Y.L., Gong, X.L., et al.: New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym. Test. 24, 324–329 (2005)CrossRef Hu, Y., Wang, Y.L., Gong, X.L., et al.: New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym. Test. 24, 324–329 (2005)CrossRef
8.
go back to reference Bossis, G., Abbo, C., Cutillas, S., et al.: Electroactive and electrostructured elastomers. Int. J. Mod. Phys. B. 15(6–7), 564–573 (2001)CrossRef Bossis, G., Abbo, C., Cutillas, S., et al.: Electroactive and electrostructured elastomers. Int. J. Mod. Phys. B. 15(6–7), 564–573 (2001)CrossRef
9.
go back to reference Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)CrossRef Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)CrossRef
10.
go back to reference Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)CrossRef Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)CrossRef
11.
go back to reference Deng, H.X., Gong, X.L., Wang, L.H.: Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater. Struct. 15, N111–N116 (2006)CrossRef Deng, H.X., Gong, X.L., Wang, L.H.: Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater. Struct. 15, N111–N116 (2006)CrossRef
12.
go back to reference Ni, Z.C., Gong, X.L., Li, J.F., et al.: Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastómer. J. Intel. Mater. Syst. Struct. 20, 1195–1202 (2009)CrossRef Ni, Z.C., Gong, X.L., Li, J.F., et al.: Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastómer. J. Intel. Mater. Syst. Struct. 20, 1195–1202 (2009)CrossRef
13.
go back to reference Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intel. Mater. Syst. Struct. 21, 1039–1047 (2010)CrossRef Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intel. Mater. Syst. Struct. 21, 1039–1047 (2010)CrossRef
14.
go back to reference Zhang, X.Z., Li, W.H.: Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct. Syst. 5(5), 517–529 (2009) Zhang, X.Z., Li, W.H.: Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct. Syst. 5(5), 517–529 (2009)
15.
go back to reference Hoang, N., Zhang, N., Du, H.: An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction. Smart Mater. Struct. 20, 015019 (2011)CrossRef Hoang, N., Zhang, N., Du, H.: An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction. Smart Mater. Struct. 20, 015019 (2011)CrossRef
16.
17.
go back to reference Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)CrossRef Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)CrossRef
18.
go back to reference Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)CrossRef Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)CrossRef
19.
go back to reference Gong, X.L., Zhang, X.Z., Zhang, P.Q.: Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test. 24, 669–676 (2005)CrossRef Gong, X.L., Zhang, X.Z., Zhang, P.Q.: Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test. 24, 669–676 (2005)CrossRef
20.
go back to reference Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)CrossRef Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)CrossRef
21.
go back to reference Ginder, J.M., Nichols, M.E., Elie, L.D., Clark, S.M.: Controllable stiffness components based on magnetorheological elastomers. In: Wereley, N.M. (ed.) Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Proceedings of SPIE 3985, pp. 418–425. (2000)CrossRef Ginder, J.M., Nichols, M.E., Elie, L.D., Clark, S.M.: Controllable stiffness components based on magnetorheological elastomers. In: Wereley, N.M. (ed.) Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Proceedings of SPIE 3985, pp. 418–425. (2000)CrossRef
22.
go back to reference Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42(3), 280–286 (2003) Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42(3), 280–286 (2003)
23.
go back to reference Li, W.H., Zhou, Y., Tian, T.F.: Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta. 49, 733–740 (2010)CrossRef Li, W.H., Zhou, Y., Tian, T.F.: Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta. 49, 733–740 (2010)CrossRef
24.
go back to reference Jolly, M.R., Carlson, J.D., Munoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996)CrossRef Jolly, M.R., Carlson, J.D., Munoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996)CrossRef
25.
go back to reference Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)CrossRef Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)CrossRef
26.
go back to reference Shen, Y., Golnaraghi, M.F., Heppler, G.R.: Experimental research and modeling of magnetorheological elastomers. J. Intel. Mater. Syst. Struct. 15, 27–35 (2004)CrossRef Shen, Y., Golnaraghi, M.F., Heppler, G.R.: Experimental research and modeling of magnetorheological elastomers. J. Intel. Mater. Syst. Struct. 15, 27–35 (2004)CrossRef
27.
go back to reference Zhang, X.Z., Li, W.H., Gong, X.L.: An effective permeability model to predict field-dependent modulus of magnetorheological elastomers. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1910–1916 (2008)CrossRef Zhang, X.Z., Li, W.H., Gong, X.L.: An effective permeability model to predict field-dependent modulus of magnetorheological elastomers. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1910–1916 (2008)CrossRef
28.
go back to reference Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42, 280–286 (2003) Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42, 280–286 (2003)
29.
go back to reference Li, W.H., Du, H., Chen, G., et al.: Nonlinear rheological behavior of MR fluids: step strain experiments. Smart Mater. Struct. 11, 209–217 (2002)CrossRef Li, W.H., Du, H., Chen, G., et al.: Nonlinear rheological behavior of MR fluids: step strain experiments. Smart Mater. Struct. 11, 209–217 (2002)CrossRef
30.
go back to reference Kchit, N., Bossis, G.: Electrical resistivity mechanism in magnetorheological elastomer. J. Phys. D-Appl. Phys. 42(10), 5505 (2009) Kchit, N., Bossis, G.: Electrical resistivity mechanism in magnetorheological elastomer. J. Phys. D-Appl. Phys. 42(10), 5505 (2009)
31.
go back to reference Wang, X.J., Gordaninejad, F., Calgar, M., et al.: Sensing behavior of magnetorheological elastomers. J. Mech. Des. 131(9), 6 (2009)CrossRef Wang, X.J., Gordaninejad, F., Calgar, M., et al.: Sensing behavior of magnetorheological elastomers. J. Mech. Des. 131(9), 6 (2009)CrossRef
32.
go back to reference Bica, I.: Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater. Lett. 63(26), 2230–2232 (2009)CrossRef Bica, I.: Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater. Lett. 63(26), 2230–2232 (2009)CrossRef
33.
go back to reference Li, W.H., Kostidis, K., Zhang, X.Z., et al.: Development of a force sensor working with MR elastomers. IEEE/ASME Int. Conf. Adv. Intel. Mechatron. 1–3, 233–238 (2009)CrossRef Li, W.H., Kostidis, K., Zhang, X.Z., et al.: Development of a force sensor working with MR elastomers. IEEE/ASME Int. Conf. Adv. Intel. Mechatron. 1–3, 233–238 (2009)CrossRef
34.
go back to reference Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)CrossRef Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)CrossRef
35.
go back to reference McLachlan, D.S.: Analytical functions for the dc and ac conductivity of conductor-insulator composites. J. Electroceram. 5(2), 93–110 (2000)CrossRef McLachlan, D.S.: Analytical functions for the dc and ac conductivity of conductor-insulator composites. J. Electroceram. 5(2), 93–110 (2000)CrossRef
36.
go back to reference Woo, L.Y., Wansom, S., Hixson, A.D., Campo, M.A., Mason, T.O.: A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38(10), 2265–2270 (2003)CrossRef Woo, L.Y., Wansom, S., Hixson, A.D., Campo, M.A., Mason, T.O.: A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38(10), 2265–2270 (2003)CrossRef
37.
go back to reference Weinberg, Z.A.: On tunneling in metal-oxide-silicon structures. J. Appl. Phys. 53(7), 5052–5056 (1982)CrossRef Weinberg, Z.A.: On tunneling in metal-oxide-silicon structures. J. Appl. Phys. 53(7), 5052–5056 (1982)CrossRef
38.
go back to reference Serdouk, S., Hayn, R., Autran, J.L.: Theory of spin-dependent tunneling current in ferromagnetic metal-oxide-silicon structures. Journal of Applied Physics, vol. 102(11), p. 113707-1-113707-5 (2007) Serdouk, S., Hayn, R., Autran, J.L.: Theory of spin-dependent tunneling current in ferromagnetic metal-oxide-silicon structures. Journal of Applied Physics, vol. 102(11), p. 113707-1-113707-5 (2007)
39.
go back to reference Zhupanska, O.I., Ulitko, A.F.: Contact with friction of a rigid cylinder with an elastic half-space. J. Mech. Phys. Solids. 53(5), 975–999 (2005)CrossRef Zhupanska, O.I., Ulitko, A.F.: Contact with friction of a rigid cylinder with an elastic half-space. J. Mech. Phys. Solids. 53(5), 975–999 (2005)CrossRef
40.
go back to reference Etsion, I., Levinson, O., Halperin, G., Varenberg, M.: Experimental investigation of the elastic-plastic contact area and static friction of a sphere on flat. J. Tribol. 127(1), 47–50 (2005)CrossRef Etsion, I., Levinson, O., Halperin, G., Varenberg, M.: Experimental investigation of the elastic-plastic contact area and static friction of a sphere on flat. J. Tribol. 127(1), 47–50 (2005)CrossRef
41.
go back to reference Stewart, W.M., Ginder, J.M., Elie, L.D.: Method and apparatus for reducing brake shudder. US Patent 5816587, 1998 Stewart, W.M., Ginder, J.M., Elie, L.D.: Method and apparatus for reducing brake shudder. US Patent 5816587, 1998
42.
go back to reference Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 7086507, 2006 Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 7086507, 2006
43.
go back to reference Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 20050011710, 2005 Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 20050011710, 2005
44.
go back to reference Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 7102474, 2006 Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 7102474, 2006
45.
go back to reference Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 20050040922, 2005 Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 20050040922, 2005
46.
go back to reference Albanese, A.M.: The design and implementation of a magnetorheological silicone composite state-switched absorber. A Thesis for the Degree Master of Science, Georgia Institute of Technology (2005) Albanese, A.M.: The design and implementation of a magnetorheological silicone composite state-switched absorber. A Thesis for the Degree Master of Science, Georgia Institute of Technology (2005)
47.
go back to reference Holdhusen, M.H.: The state-switched absorber used for vibration control of continuous systems. A Dissertation for the Degree Doctor of Philosophy, Georgia Institute of Technology (2005) Holdhusen, M.H.: The state-switched absorber used for vibration control of continuous systems. A Dissertation for the Degree Doctor of Philosophy, Georgia Institute of Technology (2005)
48.
go back to reference Deng, H.X., Gong, X.L.: Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intel. Mater. Syst. Struct. 18(12), 1205–1210 (2007)CrossRef Deng, H.X., Gong, X.L.: Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intel. Mater. Syst. Struct. 18(12), 1205–1210 (2007)CrossRef
49.
go back to reference Elie, L.D., Ginder, J.M., Mark, J.S., Nichols, M.E.: Method and apparatus for measuring displacement and force. US Patent 5814999, 1998 Elie, L.D., Ginder, J.M., Mark, J.S., Nichols, M.E.: Method and apparatus for measuring displacement and force. US Patent 5814999, 1998
Metadata
Title
Magnetorheological Elastomers and Their Applications
Authors
W. H. Li
X. Z. Zhang
H. Du
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20925-3_12

Premium Partners