Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Maintenance and Security System for PLC Railway LED Sign Communication Infrastructure

Authors : Tomasz Andrysiak, Łukasz Saganowski

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

LED marking systems are currently becoming key elements of every Smart Transport System. Ensuring proper level of security, protection and continuity of failure-free operation seems to be not a completely solved issue. In the article, a system is present allowing to detect different types of anomalies and failures/damage in critical infrastructure of railway transport realized by means of Power Line Communication. There is also described the structure of the examined LED Sign Communications Network. Other discussed topics include significant security problems and maintenance of LED sign system which have direct impact on correct operation of critical communication infrastructure. A two-stage method of anomaly/damage detection is proposed. In the first step, all the outlying observations are detected and eliminated from the analysed network traffic parameters by means of the Cook’s distance. So prepared data is used in stage two to create models on the basis of autoregressive neural network describing variability of the analysed LED Sign Communications Network parameters. Next, relations between the expected network traffic and its real variability are examined in order to detect abnormal behaviour which could indicate an attempt of an attack or failure/damage. There is also proposed a procedure of recurrent learning of the exploited neural networks in case there emerge significant fluctuations in the real PLC traffic. A number of scientific research was realized, which fully confirmed efficiency of the proposed solution and accuracy of autoregressive type of neural network for prediction of the analysed time series.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference An, S., Lee, B., Shin, D.: A survey of intelligent transportation systems. In: Proceedings of the 3 rd International Conference on Computational Intelligence, Communication Systems and Networks, pp. 332–337 (2011) An, S., Lee, B., Shin, D.: A survey of intelligent transportation systems. In: Proceedings of the 3 rd International Conference on Computational Intelligence, Communication Systems and Networks, pp. 332–337 (2011)
2.
go back to reference Qureshi, K., Abdullah, A.: A survey on intelligent transportation systems. Middle East J. Sci. Res. 15(5), 629–642 (2013) Qureshi, K., Abdullah, A.: A survey on intelligent transportation systems. Middle East J. Sci. Res. 15(5), 629–642 (2013)
3.
go back to reference Fadlil, J., Pao, H.K., Lee, Y.J.: Anomaly detection on ITS data via view association. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 22–30 (2013) Fadlil, J., Pao, H.K., Lee, Y.J.: Anomaly detection on ITS data via view association. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 22–30 (2013)
4.
go back to reference Rossi, B., Chren, S., Buhnova, B., Pitner, T.: Anomaly detection in smart grid data: an experience report. In: Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, pp. 9–12 (2016) Rossi, B., Chren, S., Buhnova, B., Pitner, T.: Anomaly detection in smart grid data: an experience report. In: Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, pp. 9–12 (2016)
5.
go back to reference Lloret, J., Tomas, J., Canovas, A.: An integrated IoT architecture for smart metering. IEEE Commun. Mag. 54(12), 50–57 (2016) CrossRef Lloret, J., Tomas, J., Canovas, A.: An integrated IoT architecture for smart metering. IEEE Commun. Mag. 54(12), 50–57 (2016) CrossRef
6.
go back to reference Daely, L., Red, P.T., Satrya, H.T., Kim, J.W., Shin, S.Y.: Design of smart LED streetlight system for smart city with web-based management system. IEEE Sens. J. 17(18), 6100–6110 (2017) CrossRef Daely, L., Red, P.T., Satrya, H.T., Kim, J.W., Shin, S.Y.: Design of smart LED streetlight system for smart city with web-based management system. IEEE Sens. J. 17(18), 6100–6110 (2017) CrossRef
7.
go back to reference Mahoor, M., Salmasi, F.R., Najafabadi, T.A.: A hierarchical smart street lighting system with brute-force energy optimization. IEEE Sens. J. 17(9), 2871–2879 (2017) CrossRef Mahoor, M., Salmasi, F.R., Najafabadi, T.A.: A hierarchical smart street lighting system with brute-force energy optimization. IEEE Sens. J. 17(9), 2871–2879 (2017) CrossRef
8.
go back to reference Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: Attack classification schema for smart city WSNs. Sensors 17(4), 1–24 (2017) CrossRef Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: Attack classification schema for smart city WSNs. Sensors 17(4), 1–24 (2017) CrossRef
9.
go back to reference Leccese, F., Cagnetti, M., Trinca, D.: A smart city application: a fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor network and WiMAX. Sensors 14(12), 24408–24424 (2014) CrossRef Leccese, F., Cagnetti, M., Trinca, D.: A smart city application: a fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor network and WiMAX. Sensors 14(12), 24408–24424 (2014) CrossRef
10.
go back to reference Xie, M., Han, S., Tian, B., Parvin, S.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011) CrossRef Xie, M., Han, S., Tian, B., Parvin, S.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011) CrossRef
11.
go back to reference Rajasegarar, S., Leckie, C., Palaniswami, M.: Anomaly detection in wireless sensor networks. IEEE Wirel. Commun. Mag. 15(4), 34–40 (2008) CrossRef Rajasegarar, S., Leckie, C., Palaniswami, M.: Anomaly detection in wireless sensor networks. IEEE Wirel. Commun. Mag. 15(4), 34–40 (2008) CrossRef
12.
go back to reference Yau, K., Chow, K.P., Yiu, S.M., Chan, C.F.: Detecting anomalous behavior of PLC using semi-supervised machine learning. In: Proceedings of the 2017 IEEE Conference on Communications and Network Security, pp. 580–585 (2017) Yau, K., Chow, K.P., Yiu, S.M., Chan, C.F.: Detecting anomalous behavior of PLC using semi-supervised machine learning. In: Proceedings of the 2017 IEEE Conference on Communications and Network Security, pp. 580–585 (2017)
13.
go back to reference Candelieri, A.: Clustering and support vector regression for water demand forecasting and anomaly detection. Sensors 9(3), 1–19 (2017) Candelieri, A.: Clustering and support vector regression for water demand forecasting and anomaly detection. Sensors 9(3), 1–19 (2017)
14.
go back to reference De Nadai, M., Someren, M.: Short-term anomaly detection in gas consumption through ARIMA and artificial neural network forecast. In: Proceedings of the 2015 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, pp. 250–255 (2015) De Nadai, M., Someren, M.: Short-term anomaly detection in gas consumption through ARIMA and artificial neural network forecast. In: Proceedings of the 2015 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, pp. 250–255 (2015)
17.
go back to reference Cook, R.D.: Detection of influential observations in linear regression. Technometrics 19(1), 15–18 (1977) MathSciNetMATH Cook, R.D.: Detection of influential observations in linear regression. Technometrics 19(1), 15–18 (1977) MathSciNetMATH
18.
go back to reference Cogollo, M.R., Velasquez, J.D.: Are neural networks able to forecast nonlinear time series with moving average components? IEEE Lat. Am. Trans. 13(7), 2292–2300 (2015) CrossRef Cogollo, M.R., Velasquez, J.D.: Are neural networks able to forecast nonlinear time series with moving average components? IEEE Lat. Am. Trans. 13(7), 2292–2300 (2015) CrossRef
19.
go back to reference Zhang, G.P., Patuwo, B.E., Hu, M.Y.: A simulation study of artificial neural networks for nonlinear time series forecasting. Comput. Oper. Res. 28, 381–396 (2001) CrossRef Zhang, G.P., Patuwo, B.E., Hu, M.Y.: A simulation study of artificial neural networks for nonlinear time series forecasting. Comput. Oper. Res. 28, 381–396 (2001) CrossRef
20.
go back to reference Bollinger, J.: Bollinger on Bollinger Bands. McGraw Hill (2002) Bollinger, J.: Bollinger on Bollinger Bands. McGraw Hill (2002)
21.
go back to reference Vervoort, S.: Smoothing the Bollinger bands. Tech. Anal. Stocks Commod. 28(6), 40–44 (2010) Vervoort, S.: Smoothing the Bollinger bands. Tech. Anal. Stocks Commod. 28(6), 40–44 (2010)
22.
go back to reference Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors 16(6), 868 (2016) CrossRef Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors 16(6), 868 (2016) CrossRef
Metadata
Title
Maintenance and Security System for PLC Railway LED Sign Communication Infrastructure
Authors
Tomasz Andrysiak
Łukasz Saganowski
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_13