Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Manufacturing Processes of Light Metals and Composites

Authors : Jose Martin Herrera Ramirez, Raul Perez Bustamante, Cesar Augusto Isaza Merino, Ana Maria Arizmendi Morquecho

Published in: Unconventional Techniques for the Production of Light Alloys and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A variety of light alloys has been widely used from ancient to modern times. Aluminum is a light metal that is easy to melt, cast, and then process in a large variety of fabrication and forming processes. Being the lightest structural element, magnesium has become a premium choice in transportation industries. Most of these materials have been developed relying on many trial-and-error experiments, as well as the experience of researchers and companies. These alloys are needed for the development of new manufacturing routes even for the progress of improved alloys and nanocomposites. In the present age, computer-aided alloy design is, however, a useful tool to save time and cost necessary for the alloy development. This chapter presents a brief review of the manufacturing processes and some useful tools for the design of light alloys, which are the basis for the subsequent manufacturing process of nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2010). Manufacturing processes for light alloys. In Materials, design and manufacturing for lightweight vehicles (Woodhead Publishing Series in Composites Science and Engineering) (pp. 235–274). Dearborn: University of Michigan.CrossRef Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2010). Manufacturing processes for light alloys. In Materials, design and manufacturing for lightweight vehicles (Woodhead Publishing Series in Composites Science and Engineering) (pp. 235–274). Dearborn: University of Michigan.CrossRef
2.
go back to reference Arnberg, L. (2001). Solidification of light metals (Non-ferrous). In R. W. C. K. H. J. Buschow, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of materials: science and technology. Elsevier. Arnberg, L. (2001). Solidification of light metals (Non-ferrous). In R. W. C. K. H. J. Buschow, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of materials: science and technology. Elsevier.
3.
go back to reference Hernandez Robles, F. C., Ramirez, J. M. H., & Mackay, R. (2017). Al-Si alloys: Automotive, aeronautical, and aerospace applications. Springer. Hernandez Robles, F. C., Ramirez, J. M. H., & Mackay, R. (2017). Al-Si alloys: Automotive, aeronautical, and aerospace applications. Springer.
4.
go back to reference Easton, M. A., & Arvind Prasad, D. H. S. J. (2016). Grain refinement of aluminium alloys: recent developments in predicting the as-cast grain size of alloys refined by Al-Ti-B master alloys. In Light metals. TMS. Easton, M. A., & Arvind Prasad, D. H. S. J. (2016). Grain refinement of aluminium alloys: recent developments in predicting the as-cast grain size of alloys refined by Al-Ti-B master alloys. In Light metals. TMS.
5.
go back to reference Westengen, H., & Rashed, H. M. M. A. (2016). Magnesium: Alloying. In Reference module in materials science and materials engineering. Elsevier. Westengen, H., & Rashed, H. M. M. A. (2016). Magnesium: Alloying. In Reference module in materials science and materials engineering. Elsevier.
6.
go back to reference Tekumalla, S., et al. (2018). A strong and deformable in-situ magnesium nanocomposite igniting above 1000 degrees C. Scientific Reports, 8(1), 7038.CrossRef Tekumalla, S., et al. (2018). A strong and deformable in-situ magnesium nanocomposite igniting above 1000 degrees C. Scientific Reports, 8(1), 7038.CrossRef
7.
go back to reference Isaza Merino, C. A., et al. (2020). Mechanical and corrosion behavior of plasma electrolytic oxidation coatings on AZ31B Mg alloy reinforced with multiwalled carbon nanotubes. Journal of Materials Engineering and Performance, 29(2), 1135–1145.CrossRef Isaza Merino, C. A., et al. (2020). Mechanical and corrosion behavior of plasma electrolytic oxidation coatings on AZ31B Mg alloy reinforced with multiwalled carbon nanotubes. Journal of Materials Engineering and Performance, 29(2), 1135–1145.CrossRef
8.
go back to reference Homma, T., Kunito, N., & Kamado, S. (2009). Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scripta Materialia, 61(6), 644–647.CrossRef Homma, T., Kunito, N., & Kamado, S. (2009). Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scripta Materialia, 61(6), 644–647.CrossRef
9.
go back to reference Kawasaki, M., & Langdon, T. G. (2015). Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. Journal of Materials Science, 51(1), 19–32.CrossRef Kawasaki, M., & Langdon, T. G. (2015). Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. Journal of Materials Science, 51(1), 19–32.CrossRef
10.
go back to reference Park, S. S., Park, W.-J., Kim, C. H., et al. (2009). The twin-roll casting of magnesium alloys. JOM, 61(8), 14–18.CrossRef Park, S. S., Park, W.-J., Kim, C. H., et al. (2009). The twin-roll casting of magnesium alloys. JOM, 61(8), 14–18.CrossRef
11.
go back to reference Gupta, M., & Wong, W. L. E. (2015). Magnesium-based nanocomposites: Lightweight materials of the future. Materials Characterization, 105, 30–46.CrossRef Gupta, M., & Wong, W. L. E. (2015). Magnesium-based nanocomposites: Lightweight materials of the future. Materials Characterization, 105, 30–46.CrossRef
12.
go back to reference Lan, J., Yang, Y., & Li, X. (2004). Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Materials Science and Engineering: A, 386(1–2), 284–290.CrossRef Lan, J., Yang, Y., & Li, X. (2004). Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Materials Science and Engineering: A, 386(1–2), 284–290.CrossRef
13.
go back to reference Isaza Merino, C. A., et al. (2017). Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 707, 257–263.CrossRef Isaza Merino, C. A., et al. (2017). Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 707, 257–263.CrossRef
14.
go back to reference Huang, Z., et al. (2018). Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction. Scripta Materialia, 143, 44–48.CrossRef Huang, Z., et al. (2018). Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction. Scripta Materialia, 143, 44–48.CrossRef
15.
go back to reference Zhang, J., et al. (2018). Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. Journal of Magnesium and Alloys, 6(3), 277–291.CrossRef Zhang, J., et al. (2018). Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. Journal of Magnesium and Alloys, 6(3), 277–291.CrossRef
16.
go back to reference Luo, K., et al. (2019). Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 7(2), 345–354.CrossRef Luo, K., et al. (2019). Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 7(2), 345–354.CrossRef
17.
go back to reference Suh, B.-C., et al. (2014). Current issues in magnesium sheet alloys: Where do we go from here? Scripta Materialia, 84-85, 1–6.CrossRef Suh, B.-C., et al. (2014). Current issues in magnesium sheet alloys: Where do we go from here? Scripta Materialia, 84-85, 1–6.CrossRef
18.
go back to reference Huang, X., et al. (2015). Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys. Materials Science and Engineering: A, 633, 144–153.CrossRef Huang, X., et al. (2015). Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys. Materials Science and Engineering: A, 633, 144–153.CrossRef
19.
go back to reference Wang, X., et al. (2020). Corrosion behavior of as-cast Mg–5Sn based alloys with in additions in 3.5 wt% NaCl solution. Corrosion Science, 164, 108318.CrossRef Wang, X., et al. (2020). Corrosion behavior of as-cast Mg–5Sn based alloys with in additions in 3.5 wt% NaCl solution. Corrosion Science, 164, 108318.CrossRef
20.
go back to reference Sun, Y., et al. (2020). Microstructure and corrosion behavior of as-homogenized Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt%). Materials Characterization, 159, 110031.CrossRef Sun, Y., et al. (2020). Microstructure and corrosion behavior of as-homogenized Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt%). Materials Characterization, 159, 110031.CrossRef
22.
go back to reference Koli, D. K., Agnihotri, G., & Purohit, R. (2015). Influence of ultrasonic assisted stir casting on mechanical properties of Al6061-nano Al2O3 composites. Materials Today: Proceedings, 2(4–5), 3017–3026. Koli, D. K., Agnihotri, G., & Purohit, R. (2015). Influence of ultrasonic assisted stir casting on mechanical properties of Al6061-nano Al2O3 composites. Materials Today: Proceedings, 2(4–5), 3017–3026.
23.
go back to reference Bhowmik, A., et al. (2020). Investigation on wear behaviour of Al7075-SiC metal matrix composites prepared by stir casting. Materials Today: Proceedings. Bhowmik, A., et al. (2020). Investigation on wear behaviour of Al7075-SiC metal matrix composites prepared by stir casting. Materials Today: Proceedings.
24.
go back to reference Chaubey, A., et al. (2020). Experimental inspection of aluminium matrix composites reinforced with SiC particles fabricated through ultrasonic assisted stir casting process. Materials Today: Proceedings. Chaubey, A., et al. (2020). Experimental inspection of aluminium matrix composites reinforced with SiC particles fabricated through ultrasonic assisted stir casting process. Materials Today: Proceedings.
25.
go back to reference Mula, S., et al. (2009). On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Materials Research Bulletin, 44(5), 1154–1160.CrossRef Mula, S., et al. (2009). On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Materials Research Bulletin, 44(5), 1154–1160.CrossRef
26.
go back to reference Mohammed, M. N., et al. (2013). Semisolid metal processing techniques for nondendritic feedstock production. ScientificWorldJournal, 2013, 752175. Mohammed, M. N., et al. (2013). Semisolid metal processing techniques for nondendritic feedstock production. ScientificWorldJournal, 2013, 752175.
27.
go back to reference Chayong, S., Atkinson, H. V., & Kapranos, P. (2005). Thixoforming 7075 aluminium alloys. Materials Science and Engineering: A, 390(1–2), 3–12.CrossRef Chayong, S., Atkinson, H. V., & Kapranos, P. (2005). Thixoforming 7075 aluminium alloys. Materials Science and Engineering: A, 390(1–2), 3–12.CrossRef
28.
go back to reference Alhawari, K. S., et al. (2017). Effect of thixoforming on the wear properties of Al-Si-Cu aluminum alloy. Journal Teknologi, 79(5–2). Alhawari, K. S., et al. (2017). Effect of thixoforming on the wear properties of Al-Si-Cu aluminum alloy. Journal Teknologi, 79(5–2).
29.
go back to reference Curle, U. A. (2010). Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys. Transactions of Nonferrous Metals Society of China, 20(9), 1719–1724.CrossRef Curle, U. A. (2010). Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys. Transactions of Nonferrous Metals Society of China, 20(9), 1719–1724.CrossRef
30.
go back to reference Spierings, A. B., et al. (2017). Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Materials & Design, 115, 52–63.CrossRef Spierings, A. B., et al. (2017). Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Materials & Design, 115, 52–63.CrossRef
31.
go back to reference Türk, D. -A., et al. (2016). Additive manufacturing with composites for integrated aircraft structures, ed. S.f.t.A.o.M.a.P.E. (SAMPE). Long Beach, CA, USA. Türk, D. -A., et al. (2016). Additive manufacturing with composites for integrated aircraft structures, ed. S.f.t.A.o.M.a.P.E. (SAMPE). Long Beach, CA, USA.
32.
go back to reference Spierings, A. B., et al. (2016). Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. CIRP Annals, 65(1), 213–216.CrossRef Spierings, A. B., et al. (2016). Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. CIRP Annals, 65(1), 213–216.CrossRef
33.
go back to reference Davydov, A. V., & Kattner, U. R. (2019). Predicting synthesizability. Journal of Physics D: Applied Physics, 52. Davydov, A. V., & Kattner, U. R. (2019). Predicting synthesizability. Journal of Physics D: Applied Physics, 52.
34.
go back to reference Deschamps, A., et al. (2018). Combinatorial approaches for the design of metallic alloys. Comptes Rendus Physique, 19(8), 737–754.CrossRef Deschamps, A., et al. (2018). Combinatorial approaches for the design of metallic alloys. Comptes Rendus Physique, 19(8), 737–754.CrossRef
35.
go back to reference Kattner, U. R. (2016). The Calphad method and its role in material and process development. Tecnol Metal Mater Min, 13(1), 3–15.CrossRef Kattner, U. R. (2016). The Calphad method and its role in material and process development. Tecnol Metal Mater Min, 13(1), 3–15.CrossRef
36.
go back to reference Shi, R., & Luo, A. A. (2018). Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad, 62, 1–17.CrossRef Shi, R., & Luo, A. A. (2018). Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad, 62, 1–17.CrossRef
37.
go back to reference Jung, J.-G., et al. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad, 64, 236–247.CrossRef Jung, J.-G., et al. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad, 64, 236–247.CrossRef
Metadata
Title
Manufacturing Processes of Light Metals and Composites
Authors
Jose Martin Herrera Ramirez
Raul Perez Bustamante
Cesar Augusto Isaza Merino
Ana Maria Arizmendi Morquecho
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48122-3_2

Premium Partners