Skip to main content
Top

2024 | OriginalPaper | Chapter

Mapping of Newcomer Clients in Federated Learning Based on Activation Strength

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Federated learning is a collaborative machine learning approach that allows multiple parties to train a model without exchanging sensitive data. In manufacturing, where different parties may have proprietary or sensitive data that cannot be shared, this is especially useful. However, traditional federated learning approaches (as proposed by McMahan et al.) do not consider the differences in data and computing resources across different parties, leading to sub-optimal model performance. Personalized federated learning addresses this issue by allowing each party to contribute to the model training according to its specific data and resources. Furthermore, most common approaches only consider a limited set of data and a short period of time, without considering the system’s long-term usefulness. It is important to consider the integration of new clients and the continuous change of data, which could result in the addition of new classes. This paper will explore the potential of federated learning in manufacturing and present a flexible and expandable approach, focusing on mapping newcomer clients based on activation strength of weights.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)CrossRef Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)CrossRef
2.
go back to reference Pike, R., et al.: Plan 9 from bell labs. Comput. Syst. 8(3), 221–254 (1995) Pike, R., et al.: Plan 9 from bell labs. Comput. Syst. 8(3), 221–254 (1995)
3.
go back to reference Liu, L., Zhang, J., Song, S.H., Letaief, K.B.: Client-edge-cloud hierarchical federated learning. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020) Liu, L., Zhang, J., Song, S.H., Letaief, K.B.: Client-edge-cloud hierarchical federated learning. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)
4.
go back to reference Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2009)CrossRef Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2009)CrossRef
5.
go back to reference Dogan, A., Birant, D.: Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060 (2021)CrossRef Dogan, A., Birant, D.: Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060 (2021)CrossRef
6.
go back to reference McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. Artificial Intelligence and Statistics, pp. 1273–1282 (2017) McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. Artificial Intelligence and Statistics, pp. 1273–1282 (2017)
7.
go back to reference Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Nitin Bhagoji, A., et al.: Advances and open problems in federated learning. FNT Mach. Learn. (Found. Trends Mach. Learn.) 14(1–2), 1–210 (2021)CrossRef Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Nitin Bhagoji, A., et al.: Advances and open problems in federated learning. FNT Mach. Learn. (Found. Trends Mach. Learn.) 14(1–2), 1–210 (2021)CrossRef
8.
go back to reference Dean, J., et al.: Large scale distributed deep networks. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012) Dean, J., et al.: Large scale distributed deep networks. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)
10.
go back to reference Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34(12), 5586–5609 (2022)CrossRef Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34(12), 5586–5609 (2022)CrossRef
11.
go back to reference Li, H., Ng, J.Y.H., Natsev, P.: Ensemblenet: end-to-end optimization of multi-headed models Li, H., Ng, J.Y.H., Natsev, P.: Ensemblenet: end-to-end optimization of multi-headed models
12.
go back to reference Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., Batra, D.: Why m heads are better than one: training a diverse ensemble of deep networks Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., Batra, D.: Why m heads are better than one: training a diverse ensemble of deep networks
13.
go back to reference Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. Off. J. Int. Neural Netw. Soc. 113, 54–71 (2019)CrossRef Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. Off. J. Int. Neural Netw. Soc. 113, 54–71 (2019)CrossRef
14.
go back to reference French, R.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef French, R.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef
16.
go back to reference Abraham, W.C., Robins, A.: Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci. 28(2), 73–78 (2005)CrossRef Abraham, W.C., Robins, A.: Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci. 28(2), 73–78 (2005)CrossRef
17.
go back to reference McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation, Psychology of Learning and Motivation, vol. 24, pp. 109–165. Academic Press, London (1989) McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation, Psychology of Learning and Motivation, vol. 24, pp. 109–165. Academic Press, London (1989)
19.
go back to reference Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95(2), 245–258 (2017)CrossRef Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95(2), 245–258 (2017)CrossRef
20.
go back to reference Kern, W.: Methodik zur gestaltung eines modularen montagesystems. Modulare Produktion: Methodik zur Gestaltung eines modularen Montagesystems für die variantenreiche Serienmontage im Automobilbau, pp. 149–222 (2021) Kern, W.: Methodik zur gestaltung eines modularen montagesystems. Modulare Produktion: Methodik zur Gestaltung eines modularen Montagesystems für die variantenreiche Serienmontage im Automobilbau, pp. 149–222 (2021)
21.
go back to reference Accorsi, R., Bortolini, M., Galizia, F.G., Gualano, F., Oliani, M.: Scalability analysis in industry 4.0 manufacturing. In: Scholz, S.G. (ed.) Sustainable Design and Manufacturing 2020, Smart Innovation, Systems and Technologies, vol. 200, pp. 161–171. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-8131-1_15 Accorsi, R., Bortolini, M., Galizia, F.G., Gualano, F., Oliani, M.: Scalability analysis in industry 4.0 manufacturing. In: Scholz, S.G. (ed.) Sustainable Design and Manufacturing 2020, Smart Innovation, Systems and Technologies, vol. 200, pp. 161–171. Springer, Singapore (2021). https://​doi.​org/​10.​1007/​978-981-15-8131-1_​15
22.
go back to reference Reiman, A., Kaivo-oja, J., Parviainen, E., Takala, E.P., Lauraeus, T.: Human factors and ergonomics in manufacturing in the industry 4.0 context – a scoping review. Technol. Soc. 65, 101572 (2021) Reiman, A., Kaivo-oja, J., Parviainen, E., Takala, E.P., Lauraeus, T.: Human factors and ergonomics in manufacturing in the industry 4.0 context – a scoping review. Technol. Soc. 65, 101572 (2021)
23.
go back to reference Komesker, S., Motsch, W., Popper, J., Sidorenko, A., Wagner, A., Ruskowski, M.: Enabling a multi-agent system for resilient production flow in modular production systems. Procedia CIRP 107, 991–998 (2022)CrossRef Komesker, S., Motsch, W., Popper, J., Sidorenko, A., Wagner, A., Ruskowski, M.: Enabling a multi-agent system for resilient production flow in modular production systems. Procedia CIRP 107, 991–998 (2022)CrossRef
24.
go back to reference Zambrano, V., et al.: Industrial digitalization in the industry 4.0 era: classification, reuse and authoring of digital models on digital twin platforms. Array 14, 100176 (2022) Zambrano, V., et al.: Industrial digitalization in the industry 4.0 era: classification, reuse and authoring of digital models on digital twin platforms. Array 14, 100176 (2022)
25.
go back to reference Kagermann, H., Wahlster, W.: Ten years of industrie 4.0. Science 4(3), 26 (2022) Kagermann, H., Wahlster, W.: Ten years of industrie 4.0. Science 4(3), 26 (2022)
26.
go back to reference Abbas, J.: Impact of total quality management on corporate sustainability through the mediating effect of knowledge management. J. Clean. Prod. 244, 118806 (2020)CrossRef Abbas, J.: Impact of total quality management on corporate sustainability through the mediating effect of knowledge management. J. Clean. Prod. 244, 118806 (2020)CrossRef
27.
go back to reference Hegiste, V., Legler, T., Ruskowski, M.: Application of federated machine learning in manufacturing. In: 2022 International Conference on Industry 4.0 Technology (I4Tech), pp. 1–8. IEEE (2022) Hegiste, V., Legler, T., Ruskowski, M.: Application of federated machine learning in manufacturing. In: 2022 International Conference on Industry 4.0 Technology (I4Tech), pp. 1–8. IEEE (2022)
29.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
30.
go back to reference Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106 (2021) Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106 (2021)
31.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, Piscataway, NJ (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, Piscataway, NJ (2009)
Metadata
Title
Mapping of Newcomer Clients in Federated Learning Based on Activation Strength
Authors
Tatjana Legler
Vinit Hegiste
Martin Ruskowski
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_130

Premium Partner