Skip to main content
Top

2016 | OriginalPaper | Chapter

Mapping of Subtractor and Adder-Subtractor Circuits on Reversible Quantum Gates

Author : Himanshu Thapliyal

Published in: Transactions on Computational Science XXVII

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reversible arithmetic units such as adders, subtractors and comparators form the essential components of any hardware implementation of quantum algorithms such as Shor’s factoring algorithm. Further, the synthesis methods proposed in the existing literature for reversible circuits target combinational and sequential circuits in general and are not suitable for synthesis of reversible arithmetic units. In this paper, we present several design methodologies for reversible subtractor and reversible adder-subtractor circuits, and a framework for synthesizing reversible arithmetic circuits. Three different design methodologies are proposed for the design of reversible ripple borrow subtractor that vary in terms of optimization of metrics such as ancilla inputs, garbage outputs, quantum cost and delay. The first approach follows the traditional ripple carry approach while the other two use the properties that the subtraction operation can be defined as \(a-b\) = \(\overline{\bar{a}+b}\) and \(a-b\) = \({a+\bar{b}+1}\), respectively. Next, we derive methodologies adapting the subtractor to also perform addition as selected with a control signal. Finally, a new synthesis framework for automatic generation of reversible arithmetic circuits optimizing the metrics of ancilla inputs, garbage outputs, quantum cost and the delay is presented that integrates the various methodologies described in our work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Rabadi, A.N.: Closed-system quantum logic network implementation of the viterbi algorithm. Facta Universitatis-Ser.: Elec. Energ. 22(1), 1–33 (2009)MathSciNetCrossRef Al-Rabadi, A.N.: Closed-system quantum logic network implementation of the viterbi algorithm. Facta Universitatis-Ser.: Elec. Energ. 22(1), 1–33 (2009)MathSciNetCrossRef
2.
go back to reference Babu, H.M., Chowdhury, A.: Design of a compact reversible binary coded decimal adder circuit. Elsevier J. Syst. Architect. 52, 272–282 (2006)CrossRef Babu, H.M., Chowdhury, A.: Design of a compact reversible binary coded decimal adder circuit. Elsevier J. Syst. Architect. 52, 272–282 (2006)CrossRef
3.
go back to reference Biswas, A.K., Hasan, M.M., Chowdhury, A.R., Hasan Babu, H.M.: Efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39(12), 1693–1703 (2008)CrossRef Biswas, A.K., Hasan, M.M., Chowdhury, A.R., Hasan Babu, H.M.: Efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39(12), 1693–1703 (2008)CrossRef
4.
go back to reference Bruce, J.W., Thornton, M.A., Shivakumaraiah, L., Kokate, P.S., Li, X.: Efficient adder circuits based on a conservative reversible logic gate. In: Proceedings of the IEEE Symposium on VLSI 2002, pp. 83–88 (2002) Bruce, J.W., Thornton, M.A., Shivakumaraiah, L., Kokate, P.S., Li, X.: Efficient adder circuits based on a conservative reversible logic gate. In: Proceedings of the IEEE Symposium on VLSI 2002, pp. 83–88 (2002)
5.
go back to reference Cheng, K.W., Tseng, C.C.: Quantum full adder and subtractor. Electron. Lett. 38(22), 1343–1344 (2002)CrossRef Cheng, K.W., Tseng, C.C.: Quantum full adder and subtractor. Electron. Lett. 38(22), 1343–1344 (2002)CrossRef
7.
go back to reference Chuang, M.L., Wang, C.Y.: Synthesis of reversible sequential elements. J. Emerg. Technol. Comput. Syst. 3(4), 1–19 (2008)MathSciNetCrossRef Chuang, M.L., Wang, C.Y.: Synthesis of reversible sequential elements. J. Emerg. Technol. Comput. Syst. 3(4), 1–19 (2008)MathSciNetCrossRef
9.
go back to reference Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33(1), 89–104 (2002)CrossRefMATH Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33(1), 89–104 (2002)CrossRefMATH
10.
go back to reference Donald, J., Jha, N.K.: Reversible logic synthesis with fredkin and peres gates. J. Emerg. Technol. Comput. Syst. 4, 2:1–2:19 (2008)CrossRef Donald, J., Jha, N.K.: Reversible logic synthesis with fredkin and peres gates. J. Emerg. Technol. Comput. Syst. 4, 2:1–2:19 (2008)CrossRef
12.
go back to reference Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef
13.
go back to reference Gupta, P., Agarwal, A., Jha, N.K.: An algorithm for synthesis of reversible logic ciruits. IEEE Trans. Comput. Aided Des. 25(11), 2317–2330 (2006)CrossRef Gupta, P., Agarwal, A., Jha, N.K.: An algorithm for synthesis of reversible logic ciruits. IEEE Trans. Comput. Aided Des. 25(11), 2317–2330 (2006)CrossRef
14.
go back to reference Yang, G., Song, X., Hung, W.N., Perkowski, M.: Bi-directional synthesis of 4-bit reversible circuits. Comput. J. 51(2), 207–215 (2008)CrossRef Yang, G., Song, X., Hung, W.N., Perkowski, M.: Bi-directional synthesis of 4-bit reversible circuits. Comput. J. 51(2), 207–215 (2008)CrossRef
15.
go back to reference Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. 6(4), 14:1–14:35 (2010)CrossRef Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. 6(4), 14:1–14:35 (2010)CrossRef
16.
go back to reference Haghparast, M., Jassbi, S., Navi, K., Hashemipour, O.: Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. World App. Sci. J. 3(6), 974–978 (2008) Haghparast, M., Jassbi, S., Navi, K., Hashemipour, O.: Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. World App. Sci. J. 3(6), 974–978 (2008)
17.
go back to reference Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. 25(9), 1652–1663 (2006) Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. 25(9), 1652–1663 (2006)
18.
go back to reference James, R.K., Jacob, K.P., Sasi, S.: Reversible binary coded decimal adders using toffoli gates. In: Ao, S.-L., Rieger, B., Chen, S.-S. (eds.) Advances in Computational Algorithms and Data Analysis. LNEE, vol. 15, pp. 117–131. Springer, Heidelberg (2008) James, R.K., Jacob, K.P., Sasi, S.: Reversible binary coded decimal adders using toffoli gates. In: Ao, S.-L., Rieger, B., Chen, S.-S. (eds.) Advances in Computational Algorithms and Data Analysis. LNEE, vol. 15, pp. 117–131. Springer, Heidelberg (2008)
19.
go back to reference Khan, M.: Design of full-adder with reversible gates. In: Proceedings of the International Conference on Computer and Information Technology, pp. 515–519 (2002) Khan, M.: Design of full-adder with reversible gates. In: Proceedings of the International Conference on Computer and Information Technology, pp. 515–519 (2002)
20.
go back to reference Kotiyal, S., Thapliyal, H., Ranganathan, N.: Reversible logic based multiplication computing unit using binary tree data structure. J. Supercomputing 71(7), 1–26 (2015)CrossRef Kotiyal, S., Thapliyal, H., Ranganathan, N.: Reversible logic based multiplication computing unit using binary tree data structure. J. Supercomputing 71(7), 1–26 (2015)CrossRef
21.
go back to reference Khan, M.H.A., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with partially-look-ahead carry. J. Syst. Architect. 53(7), 453–464 (2007)CrossRef Khan, M.H.A., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with partially-look-ahead carry. J. Syst. Architect. 53(7), 453–464 (2007)CrossRef
22.
go back to reference Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. 23(11), 1497–1509 (2004)CrossRef Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. 23(11), 1497–1509 (2004)CrossRef
23.
go back to reference Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef
25.
go back to reference Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the boolean domain. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(6), 806–816 (2011)CrossRef Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the boolean domain. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(6), 806–816 (2011)CrossRef
26.
go back to reference Matsunaga, T., Matsunaga, Y.: Customizable framework for arithmetic synthesis. In: Proceedings of the 12th Workshop on Synthesis And System Integration of Mixed Information technologies (SASIMI 2004), Yokahama, pp. 315–318 (2004) Matsunaga, T., Matsunaga, Y.: Customizable framework for arithmetic synthesis. In: Proceedings of the 12th Workshop on Synthesis And System Integration of Mixed Information technologies (SASIMI 2004), Yokahama, pp. 315–318 (2004)
28.
go back to reference Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)MathSciNetCrossRefMATH Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)MathSciNetCrossRefMATH
29.
go back to reference Mohammadi, M., Eshghi, M., Haghparast, M., Bahrololoom, A.: Design and optimization of reversible BCD adder/subtractor circuit for quantum and nanotechnology based systems. World Appl. Sci. J. 4(6), 787–792 (2008) Mohammadi, M., Eshghi, M., Haghparast, M., Bahrololoom, A.: Design and optimization of reversible BCD adder/subtractor circuit for quantum and nanotechnology based systems. World Appl. Sci. J. 4(6), 787–792 (2008)
30.
go back to reference Mohammadi, M., Haghparast, M., Eshghi, M., Navi, K.: Minimization optimization of reversible BCD-full adder/subtractor using genetic algorithm and don’t care concept. Int. J. Quantum Inf. 7(5), 969–989 (2009)CrossRefMATH Mohammadi, M., Haghparast, M., Eshghi, M., Navi, K.: Minimization optimization of reversible BCD-full adder/subtractor using genetic algorithm and don’t care concept. Int. J. Quantum Inf. 7(5), 969–989 (2009)CrossRefMATH
31.
go back to reference Murali, K.V.R.M., Sinha, N., Mahesh, T.S., Levitt, M.H., Ramanathan, K.V., Kumar, A.: Quantum information processing by nuclear magnetic resonance: experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system. Phys. Rev. A 66(2), 022313 (2002)CrossRef Murali, K.V.R.M., Sinha, N., Mahesh, T.S., Levitt, M.H., Ramanathan, K.V., Kumar, A.: Quantum information processing by nuclear magnetic resonance: experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system. Phys. Rev. A 66(2), 022313 (2002)CrossRef
32.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH
33.
go back to reference Oliveira Jr., I., Sarthour, R., Bonagamba, T., Azevedo, E., Freitas, J.C.C.: NMR Quantum Information Processing. Elsevier Science, Amsterdam (2007) Oliveira Jr., I., Sarthour, R., Bonagamba, T., Azevedo, E., Freitas, J.C.C.: NMR Quantum Information Processing. Elsevier Science, Amsterdam (2007)
35.
go back to reference Prasad, A.K., Shende, V., Markov, I., Hayes, J., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef Prasad, A.K., Shende, V., Markov, I., Hayes, J., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef
36.
go back to reference Rice, J.E.: An introduction to reversible latches. Comput. J. 51(6), 700–709 (2008)CrossRef Rice, J.E.: An introduction to reversible latches. Comput. J. 51(6), 700–709 (2008)CrossRef
37.
go back to reference Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6, 131–1326 (2010)CrossRef Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6, 131–1326 (2010)CrossRef
38.
go back to reference Shende, V.V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22, 710–722 (2003)CrossRef Shende, V.V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22, 710–722 (2003)CrossRef
39.
go back to reference Sastry, S.K., Shroff, H.S., Mahammad, S.N., Kamakoti, V.: Efficient building blocks for reversible sequential circuit design. In: Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems, Puerto Rico, pp. 437–441, August 2006 Sastry, S.K., Shroff, H.S., Mahammad, S.N., Kamakoti, V.: Efficient building blocks for reversible sequential circuit design. In: Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems, Puerto Rico, pp. 437–441, August 2006
40.
go back to reference Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys. Rev. A 53, 2855–2856 (1996)MathSciNetCrossRef Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys. Rev. A 53, 2855–2856 (1996)MathSciNetCrossRef
41.
go back to reference Takahashi, Y.: Quantum arithmetic circuits: a survey. IEICE Trans. Fundam. E92–A(5), 1276–1283 (2010) Takahashi, Y.: Quantum arithmetic circuits: a survey. IEICE Trans. Fundam. E92–A(5), 1276–1283 (2010)
42.
go back to reference Takahashi, Y., Kunihiro, N.: A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf. Comput. 5(6), 440–448 (2005)MathSciNetMATH Takahashi, Y., Kunihiro, N.: A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf. Comput. 5(6), 440–448 (2005)MathSciNetMATH
44.
go back to reference Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, pp. 229–234, May 2009 Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, pp. 229–234, May 2009
45.
go back to reference Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)CrossRef Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)CrossRef
46.
go back to reference Thapliyal, H., Ranganathan, N., Ferreira, R.: Design of a comparator tree based on reversible logic. In: Proceedings of the 10th IEEE International Conference on Nanotechnology, Seoul, Korea, pp. 1113–1116, August 2010 Thapliyal, H., Ranganathan, N., Ferreira, R.: Design of a comparator tree based on reversible logic. In: Proceedings of the 10th IEEE International Conference on Nanotechnology, Seoul, Korea, pp. 1113–1116, August 2010
47.
go back to reference Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17 (2013) Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17 (2013)
48.
go back to reference Thomsen, M., Glück, R.: Optimized reversible binary-coded decimal adders. J. Syst. Archit. 54(7), 697–706 (2008)CrossRef Thomsen, M., Glück, R.: Optimized reversible binary-coded decimal adders. J. Syst. Archit. 54(7), 697–706 (2008)CrossRef
49.
go back to reference Toffoli, T.: Reversible computing. Technical Report, Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980) Toffoli, T.: Reversible computing. Technical Report, Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980)
51.
go back to reference Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)MathSciNetCrossRef Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)MathSciNetCrossRef
52.
go back to reference Kotiyal, S., Thapliyal, H., Ranganathan, N.: Efficient reversible NOR gates and their mapping in optical computing domain. Microelectron. J. 6, 825–834 (2014)CrossRef Kotiyal, S., Thapliyal, H., Ranganathan, N.: Efficient reversible NOR gates and their mapping in optical computing domain. Microelectron. J. 6, 825–834 (2014)CrossRef
Metadata
Title
Mapping of Subtractor and Adder-Subtractor Circuits on Reversible Quantum Gates
Author
Himanshu Thapliyal
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-50412-3_2

Premium Partner