Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Marine-Based Calcium Phosphates from Hard Coral and Calcified Algae for Biomedical Applications

Authors : Ipek Karacan, Besim Ben-Nissan, Sutinee Sinutok

Published in: Marine-Derived Biomaterials for Tissue Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The materials that are developed from the different kind of marine organisms have a broad range of properties and characteristics that can explain their potential functions in the biomedical area. Accordingly, new opportunities are created by biomaterials produced from marine-based sources such as calcium phosphate-based bioceramics, composites, and polymers within the biomedical fields such as new drug delivery systems, the design of novel implantable devices, and various applications in tissue engineering. The major aim of this chapter is to explain the importance of marine structures applicable for biomedical applications as well as choosing the appropriate conversion technique in order to obtain designs and structures best suited for their intended use. Therefore, we will highlight various conversion techniques used in the synthesis of calcium phosphate bioceramics from various marine sources such as Tubipora musica, Foraminifera, Porites Hard Corals and Halimeda cylindracea calcified algae, and their biomedical applications in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35 Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35
3.
go back to reference Vallet-Regi M (2010) Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chim 13:174–185CrossRef Vallet-Regi M (2010) Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chim 13:174–185CrossRef
4.
go back to reference Ben-Nissan B, Pezzotti G (2002) Bioceramics: processing routes and mechanical evaluation. J Ceram Soc Jpn 110:601–608CrossRef Ben-Nissan B, Pezzotti G (2002) Bioceramics: processing routes and mechanical evaluation. J Ceram Soc Jpn 110:601–608CrossRef
5.
go back to reference Merolli A, Joyce TJ (eds) (2009) Biomaterials in hand surgery. Springer, Milan Merolli A, Joyce TJ (eds) (2009) Biomaterials in hand surgery. Springer, Milan
6.
go back to reference Wong JY, Bronzino JD (eds) (2007) Biomaterials. CRC Press, Boca Raton Wong JY, Bronzino JD (eds) (2007) Biomaterials. CRC Press, Boca Raton
7.
go back to reference Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, CambridgeCrossRef Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, CambridgeCrossRef
8.
go back to reference Davim JP (ed) (2013) Biomaterials and medical tribology: research and development. Woodhead Publishing, Cambridge Davim JP (ed) (2013) Biomaterials and medical tribology: research and development. Woodhead Publishing, Cambridge
10.
go back to reference Mahyudin F, Widhiyanto L, Hermawan H (2016) Biomaterials in orthopaedics. In: Mahyudin F, Hermawan H (eds) Biomaterials and medical devices. Advanced structured materials, vol 58. Springer, Cham, pp 161–181 Mahyudin F, Widhiyanto L, Hermawan H (2016) Biomaterials in orthopaedics. In: Mahyudin F, Hermawan H (eds) Biomaterials and medical devices. Advanced structured materials, vol 58. Springer, Cham, pp 161–181
11.
go back to reference Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288CrossRef Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288CrossRef
12.
go back to reference Sáenz A, Rivera-Muñoz E, Brostow W et al (1999) Ceramic biomaterials: an introductory overview. J Mater Educ 21:297–306 Sáenz A, Rivera-Muñoz E, Brostow W et al (1999) Ceramic biomaterials: an introductory overview. J Mater Educ 21:297–306
13.
go back to reference Mahyudin F, Hermawan H (eds) (2016) Biomaterials and medical devices. A perspective from an emerging country. Springer International Publishing, Switzerland Mahyudin F, Hermawan H (eds) (2016) Biomaterials and medical devices. A perspective from an emerging country. Springer International Publishing, Switzerland
14.
go back to reference Chou J, Hao J, Ben-Nissan B et al (2013) Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol Pharm Bull 36:1662–1665CrossRef Chou J, Hao J, Ben-Nissan B et al (2013) Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol Pharm Bull 36:1662–1665CrossRef
16.
go back to reference Green DW, Ben-Nissan B, Yoon KS et al (2017) Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol 35:43–54CrossRef Green DW, Ben-Nissan B, Yoon KS et al (2017) Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol 35:43–54CrossRef
17.
go back to reference Global Alliance for Musculoskeletal Health (2018) Global alliance for musculoskeletal health of the bone and joint decade. Osteoporosis and joint diseases. http://bjdonline.org/. Accessed 16 July 2018 Global Alliance for Musculoskeletal Health (2018) Global alliance for musculoskeletal health of the bone and joint decade. Osteoporosis and joint diseases. http://​bjdonline.​org/​. Accessed 16 July 2018
19.
go back to reference Pal S (2014) Design of artificial human joints and organs. Springer Science and Business Media, New YorkCrossRef Pal S (2014) Design of artificial human joints and organs. Springer Science and Business Media, New YorkCrossRef
20.
go back to reference Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef
21.
go back to reference Kim SK (ed) (2013) Marine biomaterials: characterization, isolation and applications. Taylor and Francis/CRC Press, Florida Kim SK (ed) (2013) Marine biomaterials: characterization, isolation and applications. Taylor and Francis/CRC Press, Florida
22.
go back to reference Chou J, Hao J, Ben-Nissan B et al (2014) Calcium phosphate derived from foraminifera structures as drug delivery systems and for bone tissue engineering. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer, Heidelberg, pp 415–433CrossRef Chou J, Hao J, Ben-Nissan B et al (2014) Calcium phosphate derived from foraminifera structures as drug delivery systems and for bone tissue engineering. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer, Heidelberg, pp 415–433CrossRef
24.
go back to reference Macha IJ, Charvillat C, Cazalbou S (2016) Comparative study of coral conversion, part 3: intermediate products in the first half an hour. J Aust Ceram Soc 52:177–182 Macha IJ, Charvillat C, Cazalbou S (2016) Comparative study of coral conversion, part 3: intermediate products in the first half an hour. J Aust Ceram Soc 52:177–182
25.
go back to reference Macha IJ, Cazalbou S, Ben-Nissan B et al (2015) Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar Drugs 13:666–680CrossRef Macha IJ, Cazalbou S, Ben-Nissan B et al (2015) Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar Drugs 13:666–680CrossRef
26.
go back to reference Dorozhkin SV (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942CrossRef Dorozhkin SV (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942CrossRef
27.
go back to reference Cegla RNR, Macha IJ, Ben-Nissan B et al (2014) Comparative study of conversion of coral with ammonium dihydrogen phosphate and orthophosphoric acid to produce calcium phosphates. J Aust Ceram Soc 50:154–161 Cegla RNR, Macha IJ, Ben-Nissan B et al (2014) Comparative study of conversion of coral with ammonium dihydrogen phosphate and orthophosphoric acid to produce calcium phosphates. J Aust Ceram Soc 50:154–161
28.
go back to reference Macha IJ, Ozyegin LS, Oktar FN et al (2015) Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J Aust Ceram Soc 51:125–133 Macha IJ, Ozyegin LS, Oktar FN et al (2015) Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J Aust Ceram Soc 51:125–133
29.
go back to reference Dey A, Mukhopadhyay AK (2015) Microplasma sprayed hydroxyapatite coatings. Apple Academic Press Inc., FloridaCrossRef Dey A, Mukhopadhyay AK (2015) Microplasma sprayed hydroxyapatite coatings. Apple Academic Press Inc., FloridaCrossRef
30.
go back to reference Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61CrossRef Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61CrossRef
31.
go back to reference Xu Y, Wang DZ, Yang L et al (2001) Hydrothermal conversion of coral into hydroxyapatite. Mater Charact 47:83–87CrossRef Xu Y, Wang DZ, Yang L et al (2001) Hydrothermal conversion of coral into hydroxyapatite. Mater Charact 47:83–87CrossRef
32.
go back to reference Bingöl OR, Durucan C (2012) Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate. Am J Biomed Sci 4:50–59CrossRef Bingöl OR, Durucan C (2012) Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate. Am J Biomed Sci 4:50–59CrossRef
33.
go back to reference Choi G, Karacan I, Cazalbou S et al (2017) Conversion of calcified algae (Halimeda sp.) and hard coral (Porites sp.) to hydroxyapatite. Key Eng Mater 758:157–161CrossRef Choi G, Karacan I, Cazalbou S et al (2017) Conversion of calcified algae (Halimeda sp.) and hard coral (Porites sp.) to hydroxyapatite. Key Eng Mater 758:157–161CrossRef
34.
go back to reference Pietra F (1990) A secret world. Natural products of marine life. Birkhäuser Basel, Basel Pietra F (1990) A secret world. Natural products of marine life. Birkhäuser Basel, Basel
35.
go back to reference Somerville M (1869) On molecular and microscopic science. John Murray, LondonCrossRef Somerville M (1869) On molecular and microscopic science. John Murray, LondonCrossRef
36.
go back to reference Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG memoir. American Association of Petroleum Geologists, Oklahoma Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG memoir. American Association of Petroleum Geologists, Oklahoma
37.
go back to reference Karacan I, Gunduz O, Ozyegin LS et al (2018) The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method. J Aust Ceram Soc 54:317–329CrossRef Karacan I, Gunduz O, Ozyegin LS et al (2018) The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method. J Aust Ceram Soc 54:317–329CrossRef
38.
go back to reference Hillis LW (2001) The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): a cretaceous genus that diversified in the cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:89–100CrossRef Hillis LW (2001) The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): a cretaceous genus that diversified in the cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:89–100CrossRef
39.
go back to reference Kooistra WH, Coppejans EG, Payri C (2002) Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol Phylogenetics Evol 24:121–138CrossRef Kooistra WH, Coppejans EG, Payri C (2002) Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol Phylogenetics Evol 24:121–138CrossRef
40.
go back to reference Sinutok S, Hill R, Doblin MA et al (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213CrossRef Sinutok S, Hill R, Doblin MA et al (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213CrossRef
41.
go back to reference Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. In: Blaxter JHS, Russell FS, Yonge M (eds) Advances in marine biology, vol 17. Academic Press, Massachusetts, pp 1–327 Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. In: Blaxter JHS, Russell FS, Yonge M (eds) Advances in marine biology, vol 17. Academic Press, Massachusetts, pp 1–327
42.
go back to reference Sinutok S, Hill R, Doblin MA et al (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212CrossRef Sinutok S, Hill R, Doblin MA et al (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212CrossRef
43.
go back to reference Sinutok S, Pongparadon S, Prathep A (2008) Seasonal variation in density, growth rate and calcium carbonate accumulation of Halimeda macroloba Decaisne at Tangkhen Bay, Phuket Province, Thailand. Malays J Sci 27:1–8 Sinutok S, Pongparadon S, Prathep A (2008) Seasonal variation in density, growth rate and calcium carbonate accumulation of Halimeda macroloba Decaisne at Tangkhen Bay, Phuket Province, Thailand. Malays J Sci 27:1–8
44.
go back to reference Hallock P (1981) Algal symbiosis—a mathematical analysis. Mar Biol 62:249–255CrossRef Hallock P (1981) Algal symbiosis—a mathematical analysis. Mar Biol 62:249–255CrossRef
45.
go back to reference Nobes K, Uthicke S (2008) Benthic foraminifera of the great barrier reef: a guide to species potentially useful as water quality indicators. Report to the Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Centre Limited, Cairns Nobes K, Uthicke S (2008) Benthic foraminifera of the great barrier reef: a guide to species potentially useful as water quality indicators. Report to the Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Centre Limited, Cairns
46.
go back to reference Loeblich AR, Tappan H (1984) Suprageneric classification of the Foraminiferida (protozoa). Micropaleontol 30:1–70CrossRef Loeblich AR, Tappan H (1984) Suprageneric classification of the Foraminiferida (protozoa). Micropaleontol 30:1–70CrossRef
47.
go back to reference Goldstein ST (2003) Foraminifera: a biological overview. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 37–55 Goldstein ST (2003) Foraminifera: a biological overview. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 37–55
48.
go back to reference Patterson RT, Richardson RH (1987) A taxonomic revision of the unilocular foraminifera. J Foraminifer Res 17:212–226CrossRef Patterson RT, Richardson RH (1987) A taxonomic revision of the unilocular foraminifera. J Foraminifer Res 17:212–226CrossRef
49.
go back to reference Hansen HJ (2003) Shell construction in modern calcareous Foraminifera. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 57–70 Hansen HJ (2003) Shell construction in modern calcareous Foraminifera. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 57–70
50.
go back to reference Ross CA (1972) Biology and ecology of Marginopora-vertebralis (foraminiferida), Great Barrier Reef. J Protozool 19:181–187CrossRef Ross CA (1972) Biology and ecology of Marginopora-vertebralis (foraminiferida), Great Barrier Reef. J Protozool 19:181–187CrossRef
51.
go back to reference Sinutok S, Hill R, Kuhl M et al (2014) Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar Biol 161:2143–2154CrossRef Sinutok S, Hill R, Kuhl M et al (2014) Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar Biol 161:2143–2154CrossRef
52.
go back to reference Chou J, Valenzuela S, Green DW et al (2014) Antibiotic delivery potential of nano- and micro-porous marine structure-derived β-tricalcium phosphate spheres for medical applications. Nanomedicine 9:1131–1139CrossRef Chou J, Valenzuela S, Green DW et al (2014) Antibiotic delivery potential of nano- and micro-porous marine structure-derived β-tricalcium phosphate spheres for medical applications. Nanomedicine 9:1131–1139CrossRef
53.
go back to reference Chou J, Ben-Nissan B, Green DW et al (2011) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater 13:93–99CrossRef Chou J, Ben-Nissan B, Green DW et al (2011) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater 13:93–99CrossRef
55.
go back to reference Chou J, Hao J, Kuroda S et al (2014) Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres. J Tissue Eng 5:2041731414523441CrossRef Chou J, Hao J, Kuroda S et al (2014) Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres. J Tissue Eng 5:2041731414523441CrossRef
56.
go back to reference Townsend DW (2003) Review of: Levinton JS 2001. Marine biology: function, biodiversity, ecology, 2nd edn. Oxford University Press, Oxford. Q Rev Biol 78:107 Townsend DW (2003) Review of: Levinton JS 2001. Marine biology: function, biodiversity, ecology, 2nd edn. Oxford University Press, Oxford. Q Rev Biol 78:107
57.
go back to reference Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73 Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73
58.
go back to reference Ripamonti U, Crooks J, Khoali L et al (2009) The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30:1428–1439CrossRef Ripamonti U, Crooks J, Khoali L et al (2009) The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30:1428–1439CrossRef
59.
go back to reference Macha IJ, Cazalbou S, Shimmon R et al (2017) Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery. J Tissue Eng Regen Med 11:1723–1731CrossRef Macha IJ, Cazalbou S, Shimmon R et al (2017) Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery. J Tissue Eng Regen Med 11:1723–1731CrossRef
60.
go back to reference Karacan I, Macha IJ, Choi G et al (2017) Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications. Key Eng Mater 758:120–125CrossRef Karacan I, Macha IJ, Choi G et al (2017) Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications. Key Eng Mater 758:120–125CrossRef
Metadata
Title
Marine-Based Calcium Phosphates from Hard Coral and Calcified Algae for Biomedical Applications
Authors
Ipek Karacan
Besim Ben-Nissan
Sutinee Sinutok
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_7

Premium Partners