Skip to main content
Top
Published in: Shape Memory and Superelasticity 4/2017

27-10-2017 | SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

Martensitic Transformation and Superelasticity in Fe–Mn–Al-Based Shape Memory Alloys

Authors: Toshihiro Omori, Ryosuke Kainuma

Published in: Shape Memory and Superelasticity | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ferrous shape memory alloys showing superelasticity have recently been obtained in two alloy systems in the 2010s. One is Fe–Mn–Al–Ni, which undergoes martensitic transformation (MT) between the α (bcc) parent and γ′ (fcc) martensite phases. This MT can be thermodynamically understood by considering the magnetic contribution to the Gibbs energy, and the β-NiAl (B2) nanoprecipitates play an important role in the thermoelastic MT. The temperature dependence of critical stress for the MT is very small (about 0.5 MPa/°C) due to the small entropy difference between the parent and martensite phases in the Fe–Mn–Al–Ni alloy, and consequently, superelasticity can be obtained in a wide temperature range from cryogenic temperature to about 200 °C. Microstructural control is of great importance for obtaining superelasticity, and the relative grain size is among the most crucial factors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRef Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRef
2.
go back to reference Otsuka K, Wayman CM (eds) (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (eds) (1999) Shape memory materials. Cambridge University Press, Cambridge
3.
go back to reference Xu X, Omori T, Nagasako M, Okubo A, Umetsu RY, Kanomata T, Ishida K, Kainuma R (2013) Cooling-induced shape memory effect and inverse temperature dependence of superelastic stress in Co2Cr(Ga, Si) ferromagnetic Heusler alloys. Appl Phys Lett 103(16):164104CrossRef Xu X, Omori T, Nagasako M, Okubo A, Umetsu RY, Kanomata T, Ishida K, Kainuma R (2013) Cooling-induced shape memory effect and inverse temperature dependence of superelastic stress in Co2Cr(Ga, Si) ferromagnetic Heusler alloys. Appl Phys Lett 103(16):164104CrossRef
4.
go back to reference Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438:18–24CrossRef Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438:18–24CrossRef
5.
go back to reference Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370CrossRef Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370CrossRef
6.
go back to reference Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudo-elasticity and deformation-behavior in a Ti-50.6at-percent Ni-alloy. Scr Metall 15(3):287–292CrossRef Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudo-elasticity and deformation-behavior in a Ti-50.6at-percent Ni-alloy. Scr Metall 15(3):287–292CrossRef
7.
go back to reference Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. Journal De Physique 43(Nc-4):255–260 Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. Journal De Physique 43(Nc-4):255–260
8.
go back to reference Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng A 273:658–663CrossRef Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng A 273:658–663CrossRef
9.
go back to reference Mantovani D (2000) Shape memory alloys: properties and biomedical applications. JOM J Miner Met Mater Soc 52(10):36–44CrossRef Mantovani D (2000) Shape memory alloys: properties and biomedical applications. JOM J Miner Met Mater Soc 52(10):36–44CrossRef
10.
go back to reference Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148CrossRef Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148CrossRef
11.
go back to reference Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1–2):16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1–2):16–23CrossRef
12.
go back to reference Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
13.
go back to reference Desroches R, Smith B (2004) Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. J Earthq Eng 8(3):415–429 Desroches R, Smith B (2004) Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. J Earthq Eng 8(3):415–429
14.
go back to reference Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38(279):578–592CrossRef Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38(279):578–592CrossRef
15.
go back to reference Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in gamma reversible epsilon transformation in Fe-30mn-1si alloy single-crystals. Acta Metall 30(6):1177–1183CrossRef Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in gamma reversible epsilon transformation in Fe-30mn-1si alloy single-crystals. Acta Metall 30(6):1177–1183CrossRef
16.
go back to reference La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shape Mem Superelast 3(1):37–48CrossRef La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shape Mem Superelast 3(1):37–48CrossRef
17.
go back to reference Sawaguchi T, Maruyama T, Otsuka H, Kushibe A, Inoue Y, Tsuzaki K (2016) Design concept and applications of Fe-Mn-Si-based alloys -from shape-memory to seismic response control. Mater Trans 57(3):283–293CrossRef Sawaguchi T, Maruyama T, Otsuka H, Kushibe A, Inoue Y, Tsuzaki K (2016) Design concept and applications of Fe-Mn-Si-based alloys -from shape-memory to seismic response control. Mater Trans 57(3):283–293CrossRef
18.
go back to reference Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged Fe-Ni-Ti-Co alloy. Scr Metall 18(10):1105–1109CrossRef Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged Fe-Ni-Ti-Co alloy. Scr Metall 18(10):1105–1109CrossRef
19.
go back to reference Maki T (1999) Ferrous shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 117–132 Maki T (1999) Ferrous shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 117–132
20.
go back to reference Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490CrossRef Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490CrossRef
21.
go back to reference Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy. Scr Mater 69(11–12):812–815CrossRef Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy. Scr Mater 69(11–12):812–815CrossRef
22.
go back to reference Chumlyakov YI, Kireeva IV, Kuts OA, Platonova YN, Poklonov VV, Kukshauzen IV, Kukshauzen DA, Panchenko MY, Reunova KA (2016) Thermoelastic martensitic transformations in single crystals of FeNiCoAlX(B) alloys. Russ Phys J 58(11):1549–1556CrossRef Chumlyakov YI, Kireeva IV, Kuts OA, Platonova YN, Poklonov VV, Kukshauzen IV, Kukshauzen DA, Panchenko MY, Reunova KA (2016) Thermoelastic martensitic transformations in single crystals of FeNiCoAlX(B) alloys. Russ Phys J 58(11):1549–1556CrossRef
23.
go back to reference Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy. J Alloy Compd 617:120–123CrossRef Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy. J Alloy Compd 617:120–123CrossRef
24.
go back to reference Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71CrossRef Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71CrossRef
25.
go back to reference Omori T, Watanabe K, Umetsu RY, Kainuma R, Ishida K (2009) Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl Phys Lett 95(8):082508CrossRef Omori T, Watanabe K, Umetsu RY, Kainuma R, Ishida K (2009) Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl Phys Lett 95(8):082508CrossRef
26.
go back to reference Zhu W, Liu EK, Feng L, Tang XD, Chen JL, Wu GH, Liu HY, Meng FB, Luo HZ (2009) Magnetic-field-induced transformation in FeMnGa alloys. Appl Phys Lett 95(22):222512CrossRef Zhu W, Liu EK, Feng L, Tang XD, Chen JL, Wu GH, Liu HY, Meng FB, Luo HZ (2009) Magnetic-field-induced transformation in FeMnGa alloys. Appl Phys Lett 95(22):222512CrossRef
27.
go back to reference Hwang KH, Yang WS, Wu TB, Wan CM, Byrne JG (1990) Evidence for Hcp needlelike martensite in a duplex Fe-Mn–Al-C Alloy. Metall Mater Trans A 21(10):2815–2817CrossRef Hwang KH, Yang WS, Wu TB, Wan CM, Byrne JG (1990) Evidence for Hcp needlelike martensite in a duplex Fe-Mn–Al-C Alloy. Metall Mater Trans A 21(10):2815–2817CrossRef
28.
go back to reference Hwang KH, Wan CM, Byrne JG (1991) Phase transformation in a duplex Fe-Mn-Al-C alloy. Mater Sci Eng A 132:161–169CrossRef Hwang KH, Wan CM, Byrne JG (1991) Phase transformation in a duplex Fe-Mn-Al-C alloy. Mater Sci Eng A 132:161–169CrossRef
29.
go back to reference Lee WB, Chen FR, Chen SK, Olson GB, Wan CM (1995) Transmission electron-microscopy studies of the crystallography of Bcc/18r martensite in Fe-Mn-Al-C. Acta Metall Mater 43(1):21–30 Lee WB, Chen FR, Chen SK, Olson GB, Wan CM (1995) Transmission electron-microscopy studies of the crystallography of Bcc/18r martensite in Fe-Mn-Al-C. Acta Metall Mater 43(1):21–30
30.
go back to reference Ando K, Omori T, Ohnuma I, Kainuma R, Ishida K (2009) Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe–Mn–Al alloy. Appl Phys Lett 95(21):212504CrossRef Ando K, Omori T, Ohnuma I, Kainuma R, Ishida K (2009) Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe–Mn–Al alloy. Appl Phys Lett 95(21):212504CrossRef
31.
go back to reference Umino R, Liu XJ, Sutou Y, Wang CP, Ohnuma I, Kainuma R, Ishida K (2006) Experimental determination and thermodynamic calculation of phase equilibria in the Fe–Mn–Al system. J Phase Equilibria Diffus 27(1):54–62CrossRef Umino R, Liu XJ, Sutou Y, Wang CP, Ohnuma I, Kainuma R, Ishida K (2006) Experimental determination and thermodynamic calculation of phase equilibria in the Fe–Mn–Al system. J Phase Equilibria Diffus 27(1):54–62CrossRef
32.
go back to reference Ando K (2010) Martensitic transformation from BCC phase and shape memory effect in Fe-Mn-based alloys. Doctoral Thesis, Tohoku University Ando K (2010) Martensitic transformation from BCC phase and shape memory effect in Fe-Mn-based alloys. Doctoral Thesis, Tohoku University
33.
go back to reference Omori T, Kainuma R (2015) BCC/FCC martensitic transformation and superelasticity in Fe-based alloys. Materia Japan 54(8):398–404 (in Japanese) CrossRef Omori T, Kainuma R (2015) BCC/FCC martensitic transformation and superelasticity in Fe-based alloys. Materia Japan 54(8):398–404 (in Japanese) CrossRef
34.
35.
go back to reference Weiss RJ, Tauer KJ (1956) Components of the thermodynamic functions of iron. Phys Rev 102(6):1490–1495CrossRef Weiss RJ, Tauer KJ (1956) Components of the thermodynamic functions of iron. Phys Rev 102(6):1490–1495CrossRef
36.
go back to reference Xu X, Nagasako M, Kataoka M, Umetsu RY, Omori T, Kanomata T, Kainuma R (2015) Anomalous physical properties of Heusler-type ${\mathrm{Co}}_{2}\mathrm{Cr}$(Ga, Si) alloys and thermodynamic study on reentrant martensitic transformation. Phys Rev B 91(10):104434CrossRef Xu X, Nagasako M, Kataoka M, Umetsu RY, Omori T, Kanomata T, Kainuma R (2015) Anomalous physical properties of Heusler-type ${\mathrm{Co}}_{2}\mathrm{Cr}$(Ga, Si) alloys and thermodynamic study on reentrant martensitic transformation. Phys Rev B 91(10):104434CrossRef
37.
go back to reference Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide, Pergamon Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide, Pergamon
38.
go back to reference Xia J, Xu X. Miyake A, Kimura Y, Omori T, Tokunaga M, Kainuma R (in press) Stress- and magnetic field-induced martensitic transformation at cryogenic temperatures in Fe-Mn-Al-Ni shape memory alloys. Shape Mem Superelast Xia J, Xu X. Miyake A, Kimura Y, Omori T, Tokunaga M, Kainuma R (in press) Stress- and magnetic field-induced martensitic transformation at cryogenic temperatures in Fe-Mn-Al-Ni shape memory alloys. Shape Mem Superelast
39.
go back to reference Omori T, Ando K, Ohnuma I, Ishida K, Kainuma R (2012) Alloy design and superelasticity in Fe-Mn-Al-Ni alloy. In: CIMTEC 2012 Omori T, Ando K, Ohnuma I, Ishida K, Kainuma R (2012) Alloy design and superelasticity in Fe-Mn-Al-Ni alloy. In: CIMTEC 2012
40.
go back to reference La Roca P, Medina J, Sobrero CE, Avalos M, Malarria JA, Baruj A, Sade M (2015) Effects of B2 nanoprecipitates on the phase stability and pseudoelastic behavior of Fe-Mn-Al-Ni shape memory alloys. MATEC Web Conf 33:04005CrossRef La Roca P, Medina J, Sobrero CE, Avalos M, Malarria JA, Baruj A, Sade M (2015) Effects of B2 nanoprecipitates on the phase stability and pseudoelastic behavior of Fe-Mn-Al-Ni shape memory alloys. MATEC Web Conf 33:04005CrossRef
41.
go back to reference Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys 7:165–246CrossRef Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys 7:165–246CrossRef
42.
go back to reference Niitsu K, Kimura Y, Xu X, Kainuma R (2015) Composition dependences of entropy change and transformation temperatures in Ni-rich Ti–Ni system. Shape Mem Superelast 1(2):124–131CrossRef Niitsu K, Kimura Y, Xu X, Kainuma R (2015) Composition dependences of entropy change and transformation temperatures in Ni-rich Ti–Ni system. Shape Mem Superelast 1(2):124–131CrossRef
43.
go back to reference Tseng LW, Ma J, Hornbuckle BC, Karaman I, Thompson GB, Luo ZP, Chumlyakov YI (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244CrossRef Tseng LW, Ma J, Hornbuckle BC, Karaman I, Thompson GB, Luo ZP, Chumlyakov YI (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244CrossRef
44.
go back to reference Hao S, Takayama T, Ishida K, Nishizawa T (1984) Miscibility gap in Fe-Ni-Al and Fe-Ni-Al-Co systems. Metall Trans A 15(10):1819–1828CrossRef Hao S, Takayama T, Ishida K, Nishizawa T (1984) Miscibility gap in Fe-Ni-Al and Fe-Ni-Al-Co systems. Metall Trans A 15(10):1819–1828CrossRef
45.
go back to reference Omori T, Nagasako M, Okano M, Endo K, Kainuma R (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907CrossRef Omori T, Nagasako M, Okano M, Endo K, Kainuma R (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907CrossRef
46.
go back to reference La Roca P, Baruj A, Sobrero CE, Malarría JA, Sade M (2017) Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. J Alloy Compd 708:422–427CrossRef La Roca P, Baruj A, Sobrero CE, Malarría JA, Sade M (2017) Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. J Alloy Compd 708:422–427CrossRef
47.
go back to reference Kainuma R, Gejima F, Sutou Y, Ohnuma I, Ishida K (2000) Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Huesler shape memory alloys. Mater Trans JIM 41(8):943–949CrossRef Kainuma R, Gejima F, Sutou Y, Ohnuma I, Ishida K (2000) Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Huesler shape memory alloys. Mater Trans JIM 41(8):943–949CrossRef
48.
go back to reference Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater 48(12):3027–3038CrossRef Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater 48(12):3027–3038CrossRef
49.
go back to reference Wollants P, Debonte M, Roos JR (1979) Thermodynamic analysis of the stress-induced martensitic-transformation in a single-crystal. Zeitschrift Fur Metallkunde 70(2):113–117 Wollants P, Debonte M, Roos JR (1979) Thermodynamic analysis of the stress-induced martensitic-transformation in a single-crystal. Zeitschrift Fur Metallkunde 70(2):113–117
50.
go back to reference Tseng LW, Ma J, Wang SJ, Karaman I, Kaya M, Luo ZP, Chumlyakov YI (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383CrossRef Tseng LW, Ma J, Wang SJ, Karaman I, Kaya M, Luo ZP, Chumlyakov YI (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383CrossRef
51.
go back to reference Kikuchi T, Kajiwara S (1993) Shape-memory effect and related transformation behavior in an unausaged Fe-Ni-Co-Ti alloy. Mater Trans JIM 34(10):907–918CrossRef Kikuchi T, Kajiwara S (1993) Shape-memory effect and related transformation behavior in an unausaged Fe-Ni-Co-Ti alloy. Mater Trans JIM 34(10):907–918CrossRef
52.
go back to reference Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273:67–88CrossRef Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273:67–88CrossRef
53.
go back to reference Tseng LW, Ma J, Wang SJ, Karaman I, Chumlyakov YI (2016) Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scr Mater 116:147–151CrossRef Tseng LW, Ma J, Wang SJ, Karaman I, Chumlyakov YI (2016) Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scr Mater 116:147–151CrossRef
54.
go back to reference Wechsler MS, Lieberman DS, Read TA (1953) On the theory of the formation of martensite. Trans Am Inst Min Metall Eng 197(11):1503–1515 Wechsler MS, Lieberman DS, Read TA (1953) On the theory of the formation of martensite. Trans Am Inst Min Metall Eng 197(11):1503–1515
55.
go back to reference Bowles JS, Mackenzie JK (1954) The crystallography of martensite transformations I. Acta Metall 2(1):129–137CrossRef Bowles JS, Mackenzie JK (1954) The crystallography of martensite transformations I. Acta Metall 2(1):129–137CrossRef
56.
go back to reference Saburi T, Nenno S (1982) The shape memory effect and related phenomena. In: Aaronson HI, Laughlin DE, Sekerka RE, Wayman CM (eds) International conference on solid-solid phase transformation. AIME, Pittsburgh, pp 1455–1479 Saburi T, Nenno S (1982) The shape memory effect and related phenomena. In: Aaronson HI, Laughlin DE, Sekerka RE, Wayman CM (eds) International conference on solid-solid phase transformation. AIME, Pittsburgh, pp 1455–1479
57.
go back to reference Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100(1):13–52CrossRef Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100(1):13–52CrossRef
58.
go back to reference Horikawa H, Ichinose S, Morii K, Miyazaki S, Otsuka K (1988) Orientation dependence of β1 → β1’ stress-induced martensitic transformation in a Cu-AI-Ni alloy. Metall Trans A 19(4):915–923CrossRef Horikawa H, Ichinose S, Morii K, Miyazaki S, Otsuka K (1988) Orientation dependence of β1 → β1’ stress-induced martensitic transformation in a Cu-AI-Ni alloy. Metall Trans A 19(4):915–923CrossRef
59.
go back to reference Miyazaki S, Kimura S, Otsuka K, Suzuki Y (1984) The habit plane and transformation strains associated with the martensitic-transformation in Ti-Ni single-crystals. Scr Metall 18(9):883–888CrossRef Miyazaki S, Kimura S, Otsuka K, Suzuki Y (1984) The habit plane and transformation strains associated with the martensitic-transformation in Ti-Ni single-crystals. Scr Metall 18(9):883–888CrossRef
60.
go back to reference Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1(3):032103CrossRef Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1(3):032103CrossRef
61.
go back to reference Ojha A, Sehitoglu H (2016) Transformation stress modeling in new Fe-Mn-Al-Ni shape memory alloy. Int J Plast 86:93–111CrossRef Ojha A, Sehitoglu H (2016) Transformation stress modeling in new Fe-Mn-Al-Ni shape memory alloy. Int J Plast 86:93–111CrossRef
62.
go back to reference Tseng LW, Ma J, Vollmer M, Krooß P, Niendorf T, Karaman I (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72CrossRef Tseng LW, Ma J, Vollmer M, Krooß P, Niendorf T, Karaman I (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72CrossRef
63.
go back to reference Ono N, Satoh A, Ohta H (1989) A discussion on the mechanical-properties of shape memory alloys based on a polycrystal model. Mater Trans JIM 30(10):756–764CrossRef Ono N, Satoh A, Ohta H (1989) A discussion on the mechanical-properties of shape memory alloys based on a polycrystal model. Mater Trans JIM 30(10):756–764CrossRef
64.
go back to reference Ono N (1990) Pseudoelastic deformation in a polycrystalline Cu–Zn–Al shape memory alloy. Mater Trans JIM 31(5):381–385CrossRef Ono N (1990) Pseudoelastic deformation in a polycrystalline Cu–Zn–Al shape memory alloy. Mater Trans JIM 31(5):381–385CrossRef
65.
go back to reference Somerday M, Wert JA, Comstock RJ (1997) Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy. Metall Mater Trans A 28(11):2335–2341CrossRef Somerday M, Wert JA, Comstock RJ (1997) Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy. Metall Mater Trans A 28(11):2335–2341CrossRef
66.
go back to reference Shu YC, Bhattacharya K (1998) The influence of texture on the shape-memory effect in polycrystals. Acta Mater 46(15):5457–5473CrossRef Shu YC, Bhattacharya K (1998) The influence of texture on the shape-memory effect in polycrystals. Acta Mater 46(15):5457–5473CrossRef
67.
go back to reference Šittner P, Novák V (2000) Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int J Plast 16(10):1243–1268CrossRef Šittner P, Novák V (2000) Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int J Plast 16(10):1243–1268CrossRef
68.
go back to reference Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater 53(15):4121–4133CrossRef Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater 53(15):4121–4133CrossRef
69.
go back to reference Sachs G (1928) On the derivation of a condition of flowing. Zeitschrift Des Vereines Deutscher Ingenieure 72:734–736 Sachs G (1928) On the derivation of a condition of flowing. Zeitschrift Des Vereines Deutscher Ingenieure 72:734–736
70.
go back to reference Taylor GI (1938) Plastic strain in metals. J Inst. Metals 62:307–324 Taylor GI (1938) Plastic strain in metals. J Inst. Metals 62:307–324
71.
go back to reference Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341(6153):1500–1502CrossRef Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341(6153):1500–1502CrossRef
72.
go back to reference Kusama T, Omori T, Saito T, Kise S, Tanaka T, Araki Y, Kainuma R (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8(1):354CrossRef Kusama T, Omori T, Saito T, Kise S, Tanaka T, Araki Y, Kainuma R (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8(1):354CrossRef
73.
go back to reference Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef
74.
go back to reference Ozcan H, Ma J, Wang SJ, Karaman I, Chumlyakov Y, Brown J, Noebe RD (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70CrossRef Ozcan H, Ma J, Wang SJ, Karaman I, Chumlyakov Y, Brown J, Noebe RD (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70CrossRef
75.
go back to reference Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A, Biermann H, Niendorf T (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn-Al-Ni shape memory alloys. Scr Mater 108:23–26CrossRef Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A, Biermann H, Niendorf T (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn-Al-Ni shape memory alloys. Scr Mater 108:23–26CrossRef
76.
go back to reference Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility Enhancement in Nial (B2)-Base Alloys by Microstructural Control. Metall Trans A 22(2):441–446CrossRef Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility Enhancement in Nial (B2)-Base Alloys by Microstructural Control. Metall Trans A 22(2):441–446CrossRef
77.
go back to reference Tanaka Y, Ohmori T, Oikawa K, Kainuma R, Ishida K (2004) Ferromagnetic Co-Ni-Al shape memory alloys with beta plus gamma two-phase structure. Mater Trans 45(2):427–430CrossRef Tanaka Y, Ohmori T, Oikawa K, Kainuma R, Ishida K (2004) Ferromagnetic Co-Ni-Al shape memory alloys with beta plus gamma two-phase structure. Mater Trans 45(2):427–430CrossRef
78.
go back to reference Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K (2006) Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater Sci Eng A 438–440:1054–1060CrossRef Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K (2006) Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater Sci Eng A 438–440:1054–1060CrossRef
79.
go back to reference Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183CrossRef Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183CrossRef
80.
go back to reference Vollmer M, Krooss P, Segel C, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycrystalline Co-Ni-Ga high-temperature shape memory alloys. J Alloy Compd 633:288–295CrossRef Vollmer M, Krooss P, Segel C, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycrystalline Co-Ni-Ga high-temperature shape memory alloys. J Alloy Compd 633:288–295CrossRef
81.
go back to reference Vollmer M, Krooss P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef Vollmer M, Krooss P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef
82.
go back to reference Vollmer M, Krooss P, Kriegel MJ, Klemm V, Somsen C, Ozcan H, Karaman I, Weidner A, Rafaja D, Biermann H, Niendorf T (2016) Cyclic degradation in bamboo-like Fe-Mn-Al-Ni shape memory alloys - The role of grain orientation. Scr Mater 114:156–160CrossRef Vollmer M, Krooss P, Kriegel MJ, Klemm V, Somsen C, Ozcan H, Karaman I, Weidner A, Rafaja D, Biermann H, Niendorf T (2016) Cyclic degradation in bamboo-like Fe-Mn-Al-Ni shape memory alloys - The role of grain orientation. Scr Mater 114:156–160CrossRef
83.
go back to reference Ozcan H, Ma J, Karaman I, Chumlyakov YI, Santamarta R, Brown J, Noebe RD (2018) Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging. Scr Mater 142:153–157 Ozcan H, Ma J, Karaman I, Chumlyakov YI, Santamarta R, Brown J, Noebe RD (2018) Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging. Scr Mater 142:153–157
84.
go back to reference Peng HB, Huang P, Zhou TN, Wang SL, Wen YH (2017) Reverse shape memory effect related to alpha → gamma transformation in a Fe-Mn-Al-Ni shape memory alloy. Metall Mater Trans A 48A(5):2132–2139CrossRef Peng HB, Huang P, Zhou TN, Wang SL, Wen YH (2017) Reverse shape memory effect related to alpha → gamma transformation in a Fe-Mn-Al-Ni shape memory alloy. Metall Mater Trans A 48A(5):2132–2139CrossRef
85.
go back to reference Mino J, Komanicky V, Durisin M, Saksl K, Kovac J, Varga R (2015) Structural and magnetic characterization of fe-Mn-Al-Ni Pseudo-Heusler alloy. IEEE Trans Magn 51(1):4000903CrossRef Mino J, Komanicky V, Durisin M, Saksl K, Kovac J, Varga R (2015) Structural and magnetic characterization of fe-Mn-Al-Ni Pseudo-Heusler alloy. IEEE Trans Magn 51(1):4000903CrossRef
86.
go back to reference Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloy Compd 355(1–2):58–64CrossRef Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloy Compd 355(1–2):58–64CrossRef
87.
go back to reference Khovaylo VV, Golovin IS, Komissarov AA, Lyange MV, Omori T, Kainuma R (2016) Giant internal friction and impact toughness in superelastic FeMnAl(Ni) alloys. In: 5th international conference on ferromagnetic shape memory alloys Khovaylo VV, Golovin IS, Komissarov AA, Lyange MV, Omori T, Kainuma R (2016) Giant internal friction and impact toughness in superelastic FeMnAl(Ni) alloys. In: 5th international conference on ferromagnetic shape memory alloys
88.
go back to reference Mizui K (2015) Damping properties and microstructural control of Fe-Mn-Al-Ni alloy. Master Thesis, Tohoku University Mizui K (2015) Damping properties and microstructural control of Fe-Mn-Al-Ni alloy. Master Thesis, Tohoku University
Metadata
Title
Martensitic Transformation and Superelasticity in Fe–Mn–Al-Based Shape Memory Alloys
Authors
Toshihiro Omori
Ryosuke Kainuma
Publication date
27-10-2017
Publisher
Springer International Publishing
Published in
Shape Memory and Superelasticity / Issue 4/2017
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-017-0129-9

Other articles of this Issue 4/2017

Shape Memory and Superelasticity 4/2017 Go to the issue

Special Issue: Shape Memory and Superelastic Technologies Conference 2017, Invited Paper

Numerical Study of the Plasticity-Induced Stabilization Effect on Martensitic Transformations in Shape Memory Alloys

SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti–18Zr–14Nb Alloy

Premium Partners