Skip to main content
Top

2018 | OriginalPaper | Chapter

Masking Strategies for the Bioorthogonal Release of Anticancer Glycosides

Authors : Belén Rubio-Ruiz, Thomas L. Bray, Ana M. López-Pérez, Asier Unciti-Broceta

Published in: Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Significant progress in the bioorthogonal field has resulted in the advent of a new type of prodrug: bioorthogonal prodrugs, i.e. metabolically stable precursors of therapeutic agents that are specifically activated by non-native, non-biological, non-perturbing physical or chemical stimuli. The application of such unique drug precursors in conjunction with their corresponding activating source is under preclinical experimentation as a novel way to elicit site-specific activation of cytotoxic drugs, with particular emphasis on anticancer glycosides. In this chapter, the strategies developed for the masking and bioorthogonal release of cytotoxic nucleosides using benign electromagnetic radiations, biocompatible click chemistry and bioorthogonal organometallic (BOOM) catalysis will be discussed in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stipanuk MH, Caudill MA (2012) Biochemical, physiological, and molecular aspects of human nutrition, 3rd edn. Saunders/Elsevier, Philadelphia Stipanuk MH, Caudill MA (2012) Biochemical, physiological, and molecular aspects of human nutrition, 3rd edn. Saunders/Elsevier, Philadelphia
2.
go back to reference McNaught AD (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68:1919–2008CrossRef McNaught AD (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68:1919–2008CrossRef
3.
go back to reference McNaught AD, Wilkinson A (eds) (1997) Compendium of chemical terminology the “gold book”, 2nd edn. International Union of Pure and Applied Chemistry. Blackwell Scientific Publications, Oxford McNaught AD, Wilkinson A (eds) (1997) Compendium of chemical terminology the “gold book”, 2nd edn. International Union of Pure and Applied Chemistry. Blackwell Scientific Publications, Oxford
4.
go back to reference Kren V, Martínková L (2001) Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr Med Chem 8:1303–1328CrossRef Kren V, Martínková L (2001) Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr Med Chem 8:1303–1328CrossRef
5.
go back to reference Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19:670–686 Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19:670–686
6.
go back to reference Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef
7.
go back to reference Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741CrossRef Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741CrossRef
8.
go back to reference Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521CrossRef Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521CrossRef
9.
go back to reference van Maanen JM, Retèl J, de Vries J, Pinedo HM (1988) Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst 80:1526–1533CrossRef van Maanen JM, Retèl J, de Vries J, Pinedo HM (1988) Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst 80:1526–1533CrossRef
10.
go back to reference Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464CrossRef Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464CrossRef
11.
go back to reference Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF (2016) Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev 116:14379–14455 Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF (2016) Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev 116:14379–14455
12.
go back to reference Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298CrossRef Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298CrossRef
13.
go back to reference Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109:2880–2893CrossRef Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109:2880–2893CrossRef
14.
go back to reference Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72CrossRef Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72CrossRef
15.
go back to reference DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653CrossRef DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653CrossRef
16.
go back to reference Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270CrossRef Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270CrossRef
17.
go back to reference Huttunen KM, Raunio H, Rautio J (2008) Prodrugs-from serendipity to rational design. Pharmacol Rev 63:750–771CrossRef Huttunen KM, Raunio H, Rautio J (2008) Prodrugs-from serendipity to rational design. Pharmacol Rev 63:750–771CrossRef
18.
go back to reference Kratz F, Müller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20–53CrossRef Kratz F, Müller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20–53CrossRef
19.
go back to reference Rooseboom M, Commandeur JN, Vermeulen NP (2004) Enzyme-catalyzed activation of anticancerprodrugs. Pharmacol Rev 56:53–102CrossRef Rooseboom M, Commandeur JN, Vermeulen NP (2004) Enzyme-catalyzed activation of anticancerprodrugs. Pharmacol Rev 56:53–102CrossRef
20.
go back to reference Yang Y, Aloysius H, Inoyama D, Chen Y, Hu L (2011) Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharmaceutica Sinica B 11:143–159CrossRef Yang Y, Aloysius H, Inoyama D, Chen Y, Hu L (2011) Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharmaceutica Sinica B 11:143–159CrossRef
21.
go back to reference Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S (2014) β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 74:302–313CrossRef Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S (2014) β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 74:302–313CrossRef
22.
go back to reference Haisma HJ, Boven E, van Muijen M, de Jong J, van der Vijgh WJ, Pinedo HM (1992) A monoclonal antibody-beta-glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for specific treatment of cancer. Br J Cancer 66:474–478CrossRef Haisma HJ, Boven E, van Muijen M, de Jong J, van der Vijgh WJ, Pinedo HM (1992) A monoclonal antibody-beta-glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for specific treatment of cancer. Br J Cancer 66:474–478CrossRef
23.
go back to reference Mürdter TE, Sperker B, Kivistö KT, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer HK (1997) Enhanced uptake of Doxorubicin into bronchial carcinoma: β-glucuronidase mediates release of Doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res 57:2440–2445 Mürdter TE, Sperker B, Kivistö KT, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer HK (1997) Enhanced uptake of Doxorubicin into bronchial carcinoma: β-glucuronidase mediates release of Doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res 57:2440–2445
24.
go back to reference Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84:550–557CrossRef Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84:550–557CrossRef
25.
go back to reference Houba PH, Leenders RG, Boven E, Scheeren JW, Pinedo HM, Haisma HJ (1996) Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochem Pharmacol 52:455–463CrossRef Houba PH, Leenders RG, Boven E, Scheeren JW, Pinedo HM, Haisma HJ (1996) Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochem Pharmacol 52:455–463CrossRef
26.
go back to reference Houba PH, Boven E, Erkelens CA, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (1998) The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. Br J Cancer 78:1600–1606CrossRef Houba PH, Boven E, Erkelens CA, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (1998) The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. Br J Cancer 78:1600–1606CrossRef
27.
go back to reference Bagshawe KD (1987) Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer 56:531–532CrossRef Bagshawe KD (1987) Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer 56:531–532CrossRef
28.
go back to reference Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447CrossRef Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447CrossRef
29.
go back to reference McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442CrossRef McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442CrossRef
30.
go back to reference Chen Y, Hu L (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64CrossRef Chen Y, Hu L (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64CrossRef
31.
go back to reference Hu L, Liu B, Hacking DR (2000) 5′-[2-(2-Nitrophenyl)-2-methylpropionyl]-2′-deoxy-5-fluorouridine as a potential bioreductively activated prodrug of FUDR: synthesis, stability and reductive activation. Bioorg Med Chem Lett 10:797–800CrossRef Hu L, Liu B, Hacking DR (2000) 5′-[2-(2-Nitrophenyl)-2-methylpropionyl]-2′-deoxy-5-fluorouridine as a potential bioreductively activated prodrug of FUDR: synthesis, stability and reductive activation. Bioorg Med Chem Lett 10:797–800CrossRef
32.
go back to reference Liu B, Hu L (2003) 5′-(2-Nitrophenylalkanoyl)-2′-deoxy-5-fluorouridines as potential prodrugs of FUDR for reductive activation. Bioorg Med Chem 11:3889–3899CrossRef Liu B, Hu L (2003) 5′-(2-Nitrophenylalkanoyl)-2′-deoxy-5-fluorouridines as potential prodrugs of FUDR for reductive activation. Bioorg Med Chem 11:3889–3899CrossRef
33.
go back to reference Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010CrossRef Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010CrossRef
34.
go back to reference Agard NJ, Prescher J, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047CrossRef Agard NJ, Prescher J, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047CrossRef
35.
go back to reference Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44:666–676CrossRef Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44:666–676CrossRef
36.
go back to reference Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44:651–653CrossRef Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44:651–653CrossRef
37.
go back to reference Weiss JT, Carragher NO, Unciti-Broceta A (2015) Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy. Sci Rep 5:9329CrossRef Weiss JT, Carragher NO, Unciti-Broceta A (2015) Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy. Sci Rep 5:9329CrossRef
38.
go back to reference Weiss JT, Fraser C, Rubio-Ruiz B, Myers SH, Crispin R, Dawson JC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A (2015) N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Front Chem 2:56 Weiss JT, Fraser C, Rubio-Ruiz B, Myers SH, Crispin R, Dawson JC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A (2015) N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Front Chem 2:56
39.
go back to reference Von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Münchner Med Wochenschr 47:2042–2044 Von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Münchner Med Wochenschr 47:2042–2044
40.
go back to reference Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1972) Photodynamic therapy of malignant tumours. Lancet 2:1175–1177CrossRef Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1972) Photodynamic therapy of malignant tumours. Lancet 2:1175–1177CrossRef
41.
go back to reference Doiron DR, Gomer CJ (1984) Porphyrin localization and treatment of tumors. AR Liss Inc, New York Doiron DR, Gomer CJ (1984) Porphyrin localization and treatment of tumors. AR Liss Inc, New York
42.
go back to reference Ward BG, Forbes IJ, Cowled PA, McEvoy MM, Cox LW (1982) The treatment of vaginal recurrences of gynecological malignancy with phototherapy following hematoporphyrin derivative pre-treatment. Am J Obstet Gynecol 142:356–357CrossRef Ward BG, Forbes IJ, Cowled PA, McEvoy MM, Cox LW (1982) The treatment of vaginal recurrences of gynecological malignancy with phototherapy following hematoporphyrin derivative pre-treatment. Am J Obstet Gynecol 142:356–357CrossRef
43.
go back to reference Gomer CJ, Doiron DR, Jester JV, Szirth BC, Murphree AL (1983) Hematoporphyrin derivative photoradiation therapy for the treatment of intraocular tumors: examination of acute normal ocular toxicity. Cancer Res 43:721–727 Gomer CJ, Doiron DR, Jester JV, Szirth BC, Murphree AL (1983) Hematoporphyrin derivative photoradiation therapy for the treatment of intraocular tumors: examination of acute normal ocular toxicity. Cancer Res 43:721–727
44.
go back to reference Hill JS, Kaye AH, Sawyer WH, Morstyn G, Megison PD, Stylli SS (1990) Selective uptake of hematoporphyrin derivative into human cerebral glioma. Neurosurgery 26:248–254CrossRef Hill JS, Kaye AH, Sawyer WH, Morstyn G, Megison PD, Stylli SS (1990) Selective uptake of hematoporphyrin derivative into human cerebral glioma. Neurosurgery 26:248–254CrossRef
45.
go back to reference Wenig BL, Kurtzman DM, Grossweiner LI, Mafee MF, Harris DM, Lobraico RV, Prycz RA, Appelbaum EL (1990) Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 116:1267–1270CrossRef Wenig BL, Kurtzman DM, Grossweiner LI, Mafee MF, Harris DM, Lobraico RV, Prycz RA, Appelbaum EL (1990) Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 116:1267–1270CrossRef
46.
go back to reference Barr H, Krasner N, Boulos PB, Chatlani P, Bown SG (1990) Photodynamic therapy for colorectal cancer: a quantitative pilot study. Br J Surg 77:93–96CrossRef Barr H, Krasner N, Boulos PB, Chatlani P, Bown SG (1990) Photodynamic therapy for colorectal cancer: a quantitative pilot study. Br J Surg 77:93–96CrossRef
47.
go back to reference Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905CrossRef Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905CrossRef
48.
go back to reference Hendersonand B, Dougherty T (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157CrossRef Hendersonand B, Dougherty T (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157CrossRef
49.
go back to reference Tietze LF, Müller M, Duefert SC, Schmuck K, Schuberth I (2013) Photoactivatable prodrugs of highly potent duocarmycin analogues for a selective cancer therapy. Chem Eur J 19:1726–1731CrossRef Tietze LF, Müller M, Duefert SC, Schmuck K, Schuberth I (2013) Photoactivatable prodrugs of highly potent duocarmycin analogues for a selective cancer therapy. Chem Eur J 19:1726–1731CrossRef
50.
go back to reference Horbert R, Pinchuk B, Davies P, Alessi D, Peifer C (2015) Photoactivatable prodrugs of anti-melanoma agent vemurafenib. ACS Chem Biol 10:2099–2107CrossRef Horbert R, Pinchuk B, Davies P, Alessi D, Peifer C (2015) Photoactivatable prodrugs of anti-melanoma agent vemurafenib. ACS Chem Biol 10:2099–2107CrossRef
51.
go back to reference Hossion AML, Bio M, Nkepang G, Awuah SG, You Y (2013) Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med Chem Lett 4:124–127CrossRef Hossion AML, Bio M, Nkepang G, Awuah SG, You Y (2013) Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med Chem Lett 4:124–127CrossRef
52.
go back to reference Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura K, Phillips DR, Cutts SM (2012) Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 83:1602–1612CrossRef Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura K, Phillips DR, Cutts SM (2012) Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 83:1602–1612CrossRef
53.
go back to reference Agudelo D, Bourassa P, Bérubé G (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150CrossRef Agudelo D, Bourassa P, Bérubé G (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150CrossRef
54.
go back to reference Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR (2012) Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm 436:183–193CrossRef Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR (2012) Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm 436:183–193CrossRef
55.
go back to reference Mita MM, Natale RB, Wolin EM, Laabs B, Dinh H, Wieland S, Levitt DJ, Mita AC (2015) Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs 33:341–348CrossRef Mita MM, Natale RB, Wolin EM, Laabs B, Dinh H, Wieland S, Levitt DJ, Mita AC (2015) Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs 33:341–348CrossRef
56.
go back to reference Ibsen S, Zahavy E, Wrasdilo W, Berns M, Chan M, Esener S (2010) A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res 27:1848–1860CrossRef Ibsen S, Zahavy E, Wrasdilo W, Berns M, Chan M, Esener S (2010) A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res 27:1848–1860CrossRef
57.
go back to reference Ibsen S, Zahavy E, Wrasidlo W, Hayashi T, Norton J, Su Y, Adams S, Esener S (2013) Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue. Photochem Photobiol 89:698–708CrossRef Ibsen S, Zahavy E, Wrasidlo W, Hayashi T, Norton J, Su Y, Adams S, Esener S (2013) Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue. Photochem Photobiol 89:698–708CrossRef
58.
go back to reference Olejnik J, Sonar S, Krzymanska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci USA 92:7590–7594CrossRef Olejnik J, Sonar S, Krzymanska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci USA 92:7590–7594CrossRef
59.
go back to reference Power DG, Kemeny NE (2009) The role of floxuridine in metastatic liver disease. Mol Cancer Therapeutics 8:1015–1025CrossRef Power DG, Kemeny NE (2009) The role of floxuridine in metastatic liver disease. Mol Cancer Therapeutics 8:1015–1025CrossRef
60.
go back to reference Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3:415–424CrossRef Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3:415–424CrossRef
61.
go back to reference Tobias SC, Borch RF (2001) Synthesis and biological studies of novel nucleoside phosphoramidate prodrugs. J Med Chem 44:4475–4480CrossRef Tobias SC, Borch RF (2001) Synthesis and biological studies of novel nucleoside phosphoramidate prodrugs. J Med Chem 44:4475–4480CrossRef
62.
go back to reference Wei Y, Yan Y, Pei D, Gong B (1998) A photoactivated prodrug. Bioorganic Med Chem Lett 8:2419–2422CrossRef Wei Y, Yan Y, Pei D, Gong B (1998) A photoactivated prodrug. Bioorganic Med Chem Lett 8:2419–2422CrossRef
63.
go back to reference Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338CrossRef Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338CrossRef
64.
go back to reference Schwartz EL, Baptiste N, Wadler S, Makower D (1995) Thymidine phosphorylase mediates the sensitivity of human colon-carcinoma cells to 5-fluorouracil. J Biol Chem 270:19073–19077CrossRef Schwartz EL, Baptiste N, Wadler S, Makower D (1995) Thymidine phosphorylase mediates the sensitivity of human colon-carcinoma cells to 5-fluorouracil. J Biol Chem 270:19073–19077CrossRef
65.
go back to reference Dobritzsch D, Ricagno S, Schneider G, Schnackerz KD, Lindqvist Y (2002) Crystal structure of the productive ternary complex of dihydropyrimidine dehydrogenase with NADPH and 5-iodouracil. Implications for mechanism of inhibition and electron transfer. J Biol Chem 277:13155–13166CrossRef Dobritzsch D, Ricagno S, Schneider G, Schnackerz KD, Lindqvist Y (2002) Crystal structure of the productive ternary complex of dihydropyrimidine dehydrogenase with NADPH and 5-iodouracil. Implications for mechanism of inhibition and electron transfer. J Biol Chem 277:13155–13166CrossRef
66.
go back to reference Nishimoto S, Hatta H, Ueshima H, Kagiya T (1992) 1-(5′-Fluoro-6′-hydroxy-5′,6′-dihydrouracil-5′-yl)-5-fluorouracil, a novel N(1)-C(5′)-linked dimer that releases 5-fluorouracil by radiation activation under hypoxic conditions. J Med Chem 35:2711–2712CrossRef Nishimoto S, Hatta H, Ueshima H, Kagiya T (1992) 1-(5′-Fluoro-6′-hydroxy-5′,6′-dihydrouracil-5′-yl)-5-fluorouracil, a novel N(1)-C(5′)-linked dimer that releases 5-fluorouracil by radiation activation under hypoxic conditions. J Med Chem 35:2711–2712CrossRef
67.
go back to reference Ito T, Tanabe K, Yamada H, Hatta H, Nishimoto S (2008) Radiation- and photo-induced activation of 5-fluorouracil prodrugs as a strategy for the selective treatment of solid tumors. Molecules 13:2370–2384CrossRef Ito T, Tanabe K, Yamada H, Hatta H, Nishimoto S (2008) Radiation- and photo-induced activation of 5-fluorouracil prodrugs as a strategy for the selective treatment of solid tumors. Molecules 13:2370–2384CrossRef
68.
go back to reference Zhang Z, Hatta H, Ito T, Nishimoto S (2005) Synthesis and photochemical properties of photoactivated antitumor prodrugs releasing 5-fluorouracil. Org Biomol Chem 3:592–596CrossRef Zhang Z, Hatta H, Ito T, Nishimoto S (2005) Synthesis and photochemical properties of photoactivated antitumor prodrugs releasing 5-fluorouracil. Org Biomol Chem 3:592–596CrossRef
69.
go back to reference Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727 Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727
70.
go back to reference Lin W, Peng D, Wang B, Long L, Guo C, Yuan J (2008) A model for light-triggered porphyrin anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur J Org Chem 793–796 Lin W, Peng D, Wang B, Long L, Guo C, Yuan J (2008) A model for light-triggered porphyrin anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur J Org Chem 793–796
71.
go back to reference Takiuchi H, Ajani JA (1998) Uracil-tegafur in gastric carcinoma: a comprehensive review. J Clin Oncol 16:2877–2885CrossRef Takiuchi H, Ajani JA (1998) Uracil-tegafur in gastric carcinoma: a comprehensive review. J Clin Oncol 16:2877–2885CrossRef
72.
go back to reference Sinkel C, Greiner A, Agarwal S (2008) Synthesis, characterization, and properties evaluation of methylcoumarin end-functionalized poly(methyl methacrylate) for photoinduced drug release. Macromolecules 41:3460–3467CrossRef Sinkel C, Greiner A, Agarwal S (2008) Synthesis, characterization, and properties evaluation of methylcoumarin end-functionalized poly(methyl methacrylate) for photoinduced drug release. Macromolecules 41:3460–3467CrossRef
73.
go back to reference Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021CrossRef Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021CrossRef
74.
go back to reference Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015CrossRef Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015CrossRef
75.
go back to reference Agard N, Baskin J, Prescher J, Lo A, Bertozzi C (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648CrossRef Agard N, Baskin J, Prescher J, Lo A, Bertozzi C (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648CrossRef
76.
go back to reference Binder WH (2008) “Click”—chemistry in polymer and material science: the update. Macromol Rapid Commun 29:951CrossRef Binder WH (2008) “Click”—chemistry in polymer and material science: the update. Macromol Rapid Commun 29:951CrossRef
77.
go back to reference Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7:489–501CrossRef Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7:489–501CrossRef
78.
go back to reference Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137CrossRef Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137CrossRef
79.
go back to reference Lahann J (2009) Click chemistry for biotechnology and materials science. In: Click chemistry for biotechnology and materials science. Wiley, Chichester Lahann J (2009) Click chemistry for biotechnology and materials science. In: Click chemistry for biotechnology and materials science. Wiley, Chichester
80.
go back to reference Neibert K, Gosein V, Sharma A, Khan M, Whitehead MA, Maysinger D, Kakkar A (2013) “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm 10:2502–2508CrossRef Neibert K, Gosein V, Sharma A, Khan M, Whitehead MA, Maysinger D, Kakkar A (2013) “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm 10:2502–2508CrossRef
81.
go back to reference Sevenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Delivery Rev 64:102–115CrossRef Sevenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Delivery Rev 64:102–115CrossRef
82.
go back to reference Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998CrossRef Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998CrossRef
83.
go back to reference van Berkel SS, Dirks AT, Debets MF, van Delft FL, Cornelissen JJ, Nolte RJ, Rutjes FP (2007) Metal-free triazole formation as a tool for bioconjugation. ChemBioChem 8:1504–1508CrossRef van Berkel SS, Dirks AT, Debets MF, van Delft FL, Cornelissen JJ, Nolte RJ, Rutjes FP (2007) Metal-free triazole formation as a tool for bioconjugation. ChemBioChem 8:1504–1508CrossRef
84.
go back to reference McKay CS, Moran J, Pezacki JP (2010) Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chem Commun 46:931–933CrossRef McKay CS, Moran J, Pezacki JP (2010) Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chem Commun 46:931–933CrossRef
85.
go back to reference Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519CrossRef Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519CrossRef
86.
go back to reference Devaraj NK, Weissleder R (2011) Biomedical applications of tetrazine cycloadditions. Acc Chem Res 44:816–827CrossRef Devaraj NK, Weissleder R (2011) Biomedical applications of tetrazine cycloadditions. Acc Chem Res 44:816–827CrossRef
87.
go back to reference Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K (2012) Bioorthogonal copper-free Click Chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed 51:11836–11840CrossRef Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K (2012) Bioorthogonal copper-free Click Chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed 51:11836–11840CrossRef
88.
go back to reference Hapuarachchige S, Zhu W, Kato Y, Artemov D (2014) Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics. Biomaterials 7:2346–2354CrossRef Hapuarachchige S, Zhu W, Kato Y, Artemov D (2014) Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics. Biomaterials 7:2346–2354CrossRef
89.
go back to reference Brudno Y, Desai RM, Kwee BJ, Neel SJ, Aizenberg M, Mooney DJ (2015) In vivo targeting through Click Chemistry. ChemMedChem 10:617–620CrossRef Brudno Y, Desai RM, Kwee BJ, Neel SJ, Aizenberg M, Mooney DJ (2015) In vivo targeting through Click Chemistry. ChemMedChem 10:617–620CrossRef
90.
go back to reference Azoulay M, Tuffin G, Sallem W, Floret JC (2006) A new drug-release method using the Staudinger ligation. Bioorg Med Chem Lett 16:3147–3149CrossRef Azoulay M, Tuffin G, Sallem W, Floret JC (2006) A new drug-release method using the Staudinger ligation. Bioorg Med Chem Lett 16:3147–3149CrossRef
91.
go back to reference Carl PL, Chakravarty PK, Katzenellenbogen JA (1981) A novel connector linkage applicable in prodrug design. J Med Chem 24:479–480CrossRef Carl PL, Chakravarty PK, Katzenellenbogen JA (1981) A novel connector linkage applicable in prodrug design. J Med Chem 24:479–480CrossRef
92.
go back to reference van Brakel R, Vulders RC, Bokdam RJ, Grull H, Robillard MS (2008) A doxorubicin prodrug activated by the Staudinger reaction. Bioconjugate Chem 19:714–718CrossRef van Brakel R, Vulders RC, Bokdam RJ, Grull H, Robillard MS (2008) A doxorubicin prodrug activated by the Staudinger reaction. Bioconjugate Chem 19:714–718CrossRef
93.
go back to reference Gorska K, Manicardi A, Barluenga S, Winssinger N (2011) DNA-templated release of functional molecules with an azide-reduction-triggered immolative linker. Chem Commun 47:4364–4366CrossRef Gorska K, Manicardi A, Barluenga S, Winssinger N (2011) DNA-templated release of functional molecules with an azide-reduction-triggered immolative linker. Chem Commun 47:4364–4366CrossRef
94.
go back to reference Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew Chem Int Ed 52:14112–14116CrossRef Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew Chem Int Ed 52:14112–14116CrossRef
95.
go back to reference Bielski R, Witczak Z (2013) Strategies for coupling molecular units if subsequent decoupling is required. Chem Rev 113:2205–2243CrossRef Bielski R, Witczak Z (2013) Strategies for coupling molecular units if subsequent decoupling is required. Chem Rev 113:2205–2243CrossRef
96.
go back to reference Matikonda SS, Orsi DL, Staudacher V, Jenkins IA, Fiedler F, Chen J, Gamble AB (2015) Bioorthogonal prodrug activation driven by a strain-promoted 1,3-dipolar cycloaddition. Chem Sci 6:1212–1218CrossRef Matikonda SS, Orsi DL, Staudacher V, Jenkins IA, Fiedler F, Chen J, Gamble AB (2015) Bioorthogonal prodrug activation driven by a strain-promoted 1,3-dipolar cycloaddition. Chem Sci 6:1212–1218CrossRef
97.
go back to reference Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, HobokenCrossRef Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, HobokenCrossRef
98.
go back to reference Beller M, Bolm C (2008) Transition metals for organic synthesis: building blocks and fine chemicals, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim Beller M, Bolm C (2008) Transition metals for organic synthesis: building blocks and fine chemicals, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim
99.
go back to reference Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830CrossRef Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830CrossRef
100.
go back to reference Unciti-Broceta A, Johansson EM, Yusop RM, Sánchez-Martín RM, Bradley M (2012) Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells. Nat Protocols 7:1207–1218CrossRef Unciti-Broceta A, Johansson EM, Yusop RM, Sánchez-Martín RM, Bradley M (2012) Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells. Nat Protocols 7:1207–1218CrossRef
101.
go back to reference Völker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25:48–54CrossRef Völker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25:48–54CrossRef
102.
go back to reference Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12:129–137CrossRef Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12:129–137CrossRef
103.
go back to reference Streu C, Meggers E (2006) Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed 45:5645–5648CrossRef Streu C, Meggers E (2006) Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed 45:5645–5648CrossRef
104.
go back to reference Sasmal PK, Carregal-Romero S, Parak WJ, Meggers E (2012) Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments. Organometallics 31:5968–5970CrossRef Sasmal PK, Carregal-Romero S, Parak WJ, Meggers E (2012) Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments. Organometallics 31:5968–5970CrossRef
105.
go back to reference Yusop RM, Unciti-Broceta A, Johansson EM, Sánchez-Martín RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3:239–243CrossRef Yusop RM, Unciti-Broceta A, Johansson EM, Sánchez-Martín RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3:239–243CrossRef
106.
go back to reference Unciti-Broceta A, Yusop RM, Richardson PR, Walton JGA, Bradley M (2009) A fluorescein-derived anthocyanidin-inspired pH sensor. Tetrahedron Lett 50:3713–3715CrossRef Unciti-Broceta A, Yusop RM, Richardson PR, Walton JGA, Bradley M (2009) A fluorescein-derived anthocyanidin-inspired pH sensor. Tetrahedron Lett 50:3713–3715CrossRef
107.
go back to reference Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sánchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5:3277CrossRef Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sánchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5:3277CrossRef
108.
go back to reference Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sánchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A (2014) Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 57:5395–5404CrossRef Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sánchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A (2014) Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 57:5395–5404CrossRef
109.
go back to reference Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR (2014) Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 6:352–361CrossRef Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR (2014) Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 6:352–361CrossRef
110.
go back to reference Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597–603CrossRef Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597–603CrossRef
111.
go back to reference Unciti-Broceta A (2015) Bioorthogonal catalysis: rise of the nanobots. Nat Chem 7:538–539CrossRef Unciti-Broceta A (2015) Bioorthogonal catalysis: rise of the nanobots. Nat Chem 7:538–539CrossRef
112.
go back to reference Völker T, Dempwolff F, Graumann PL, Meggers E (2014) Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chem Int Ed Engl 53:10536–10540CrossRef Völker T, Dempwolff F, Graumann PL, Meggers E (2014) Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chem Int Ed Engl 53:10536–10540CrossRef
113.
go back to reference Pérez-López AM, Rubio-Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaría J, Unciti-Broceta A (2017) Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed Engl 56. 10.1002/anie.201705609 Pérez-López AM, Rubio-Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaría J, Unciti-Broceta A (2017) Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed Engl 56. 10.​1002/​anie.​201705609
Metadata
Title
Masking Strategies for the Bioorthogonal Release of Anticancer Glycosides
Authors
Belén Rubio-Ruiz
Thomas L. Bray
Ana M. López-Pérez
Asier Unciti-Broceta
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65587-1_12