Skip to main content
Top

2019 | OriginalPaper | Chapter

Mass Transfer Model of Sputtering from Rod-Like Targets for Synthesis of Multielement Nanocoatings

Authors : Yu. O. Kosminska, V. I. Perekrestov

Published in: Advances in Thin Films, Nanostructured Materials, and Coatings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work develops the mathematical model that allows calculating element concentration depending on substrate location at low working gas pressures for coatings deposited by new magnetron sputtering device on the basis of hollow cathode and rod-like target. In this work, a target composed of two semicylindrical constituents is considered. As the rod-like target can be made of multiple materials in any geometry, the model can be adjusted for any particular case. The calculations explain the general trend of experimental data behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baranov O, Bazaka K, Kersten H et al (2017) Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl Phys Rev 4:041302 (1–32) Baranov O, Bazaka K, Kersten H et al (2017) Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl Phys Rev 4:041302 (1–32)
2.
go back to reference Levchenko I, Keidar M, Xu S et al (2013) Low-temperature plasmas in carbon nanostructure synthesis. J Vac Sci Technol B 31:050801CrossRef Levchenko I, Keidar M, Xu S et al (2013) Low-temperature plasmas in carbon nanostructure synthesis. J Vac Sci Technol B 31:050801CrossRef
3.
go back to reference Anders A (2010) High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition. Surf Coat Technol 204:2864–2868CrossRef Anders A (2010) High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition. Surf Coat Technol 204:2864–2868CrossRef
4.
go back to reference Han JG (2009) Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J Phys D Appl Phys 42:043001CrossRef Han JG (2009) Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J Phys D Appl Phys 42:043001CrossRef
5.
go back to reference Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172CrossRef Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172CrossRef
6.
go back to reference Musil J, Baroch P, Vlcek J et al (2005) Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films 475:208–218CrossRef Musil J, Baroch P, Vlcek J et al (2005) Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films 475:208–218CrossRef
7.
go back to reference Perekrestov VI, Mokrenko OA, Kosminska YuO (2010) Sputtering device for deposition highly porous coatings of metals or weakly volatile substances onto flat substrates in vacuum. UA patent 92525 Perekrestov VI, Mokrenko OA, Kosminska YuO (2010) Sputtering device for deposition highly porous coatings of metals or weakly volatile substances onto flat substrates in vacuum. UA patent 92525
8.
go back to reference Perekrestov VI, Kosminska YuO, Kornyushchenko AS (2007) Device for deposition of vacuum condensates. UA patent 80775 Perekrestov VI, Kosminska YuO, Kornyushchenko AS (2007) Device for deposition of vacuum condensates. UA patent 80775
9.
go back to reference Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in vacuum. UA patent 57940A Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in vacuum. UA patent 57940A
10.
go back to reference Perekrestov VI, Kosminska YuO, Mokrenko OA, Dyoshin BV (2008) Device for deposition of condensates in a vacuum. UA patent 37359 Perekrestov VI, Kosminska YuO, Mokrenko OA, Dyoshin BV (2008) Device for deposition of condensates in a vacuum. UA patent 37359
11.
go back to reference Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in a vacuum. UA patent 57952 Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in a vacuum. UA patent 57952
12.
go back to reference Perekrestov VI, Kosminska YuO (2004) Device for deposition of condensates in a vacuum. UA patent 69723 Perekrestov VI, Kosminska YuO (2004) Device for deposition of condensates in a vacuum. UA patent 69723
13.
go back to reference Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2004) Sputtering device for deposition of condensates in a vacuum. UA patent 69974 Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2004) Sputtering device for deposition of condensates in a vacuum. UA patent 69974
14.
go back to reference Perekrestov VI, Kosminska YuO (2006) Sputtering device for deposition of condensates in a vacuum. UA patent 76257 Perekrestov VI, Kosminska YuO (2006) Sputtering device for deposition of condensates in a vacuum. UA patent 76257
15.
go back to reference Glang R (1970) Vacuum evaporation. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 1–130 Glang R (1970) Vacuum evaporation. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 1–130
16.
go back to reference Depla D, Mahieu S (eds) (2008) Reactive sputter deposition. Springer-Verlag, Berlin Heidelberg Depla D, Mahieu S (eds) (2008) Reactive sputter deposition. Springer-Verlag, Berlin Heidelberg
17.
go back to reference Wehner GK, Anderson GS (1970) Physics of sputtering by ion bombardment. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 352–404 Wehner GK, Anderson GS (1970) Physics of sputtering by ion bombardment. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 352–404
18.
go back to reference Perekrestov VI, Kravchenko SN, Kosminska YuO, Kononenko IN (2011) Structure of Ni–Cu condensates obtained at sputtering of composite rods. Metallofiz Nov Tekh+ 33:203–210 Perekrestov VI, Kravchenko SN, Kosminska YuO, Kononenko IN (2011) Structure of Ni–Cu condensates obtained at sputtering of composite rods. Metallofiz Nov Tekh+ 33:203–210
Metadata
Title
Mass Transfer Model of Sputtering from Rod-Like Targets for Synthesis of Multielement Nanocoatings
Authors
Yu. O. Kosminska
V. I. Perekrestov
Copyright Year
2019
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-13-6133-3_6

Premium Partners