Skip to main content
Top

12-04-2018

Massive MIMO pilot assignment optimization based on total capacity

Authors: José Carlos Marinello, Cristiano Magalhães Panazio, Taufik Abrão

Published in: Telecommunication Systems | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the effects of pilot assignment in multi-cell massive multiple-input multiple-output systems. When deploying a large number of antennas at base station (BS), and linear detection/precoding algorithms, the system performance in both uplink (UL) and downlink (DL) is mainly limited by pilot contamination. This interference is proper of each pilot, and thus system performance can be improved by suitably assigning the pilot sequences to the users within the cell, according to the desired metric. We show in this paper that UL and DL performances constitute conflicting metrics, in such a way that one cannot achieve the best performance in UL and DL with a single pilot assignment configuration. Thus, we propose an alternative metric, namely total capacity, aiming to simultaneously achieve a suitable performance in both links. Since the PA problem is combinatorial, and the search space grows with the number of pilots in a factorial fashion, we also propose a low complexity suboptimal algorithm that achieves promising capacity performance avoiding the exhaustive search. Besides, the combination of our proposed PA schemes with an efficient power control algorithm unveils the great potential of the proposed techniques in providing improved performance for a higher number of users. Our numerical results demonstrate that with 64 BS antennas serving 10 users, our proposed method can assure a 95%-likely rate of 4.2 Mbps for both DL and UL, and a symmetric 95%-likely rate of 1.4 Mbps when serving 32 users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
With the aid of game theory in [4][Sec. 4.1], it is shown that the PA problem can be seen as a restricted potential game, in which each cell is a player that chooses its strategy following a selfish best response dynamics. Therefore, the convergence of the game to a Nash equilibrium is guaranteed. Moreover, in [3][Fig. 3(c)], it is noted that the number of optimization rounds to PA convergence among cells decreases as long as the number of antennas at BS increases. For instance, three rounds are sufficient for convergence under 128 BS antennas.
 
2
With “\(k'\)-th pilot sequence”, we refer to the pilot of index \(k'\) in the set of available pilot sequences.
 
3
Which can represent, for instance, a scenario with 1 ms of channel coherence time and 100 KHz of coherence bandwidth.
 
Literature
1.
go back to reference Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
2.
go back to reference Marzetta, T., Larsson, E., Yang, H., & Ngo, H. (2016). Fundamentals of Massive MIMO. New York, NY: Cambridge University Press.CrossRef Marzetta, T., Larsson, E., Yang, H., & Ngo, H. (2016). Fundamentals of Massive MIMO. New York, NY: Cambridge University Press.CrossRef
3.
go back to reference Zhu, X., Wang, Z., Dai, L., & Qian, C. (2015). Smart pilot assignment for massive MIMO. IEEE Communications Letters, 19(9), 1644–1647.CrossRef Zhu, X., Wang, Z., Dai, L., & Qian, C. (2015). Smart pilot assignment for massive MIMO. IEEE Communications Letters, 19(9), 1644–1647.CrossRef
4.
go back to reference Marinello, J. C., & Abrão, T. (2016). Pilot distribution optimization in multi-cellular large scale MIMO systems. AEU - International Journal of Electronics and Communications, 70(8), 1094–1103.CrossRef Marinello, J. C., & Abrão, T. (2016). Pilot distribution optimization in multi-cellular large scale MIMO systems. AEU - International Journal of Electronics and Communications, 70(8), 1094–1103.CrossRef
5.
go back to reference Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef
6.
go back to reference Zhu, X., Dai, L., Wang, Z., & Wang, X. (2017). Weighted-graph-coloring-based pilot decontamination for multicell massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(3), 2829–2834.CrossRef Zhu, X., Dai, L., Wang, Z., & Wang, X. (2017). Weighted-graph-coloring-based pilot decontamination for multicell massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(3), 2829–2834.CrossRef
7.
go back to reference Chen, Z., & Yang, C. (2016). Pilot decontamination in wideband massive MIMO systems by exploiting channel sparsity. IEEE Transactions on Wireless Communications, 15(7), 5087–5100. Chen, Z., & Yang, C. (2016). Pilot decontamination in wideband massive MIMO systems by exploiting channel sparsity. IEEE Transactions on Wireless Communications, 15(7), 5087–5100.
8.
go back to reference Zhao, P., Wang, Z., Qian, C., Dai, L., & Chen, S. (2016). Location-aware pilot assignment for massive MIMO systems in heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(8), 6815–6821.CrossRef Zhao, P., Wang, Z., Qian, C., Dai, L., & Chen, S. (2016). Location-aware pilot assignment for massive MIMO systems in heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(8), 6815–6821.CrossRef
9.
go back to reference Wang, Z., Zhao, P., Qian, C., & Chen, S. (2016). Location-aware channel estimation enhanced TDD based massive MIMO. IEEE Access, 4, 7828–7840.CrossRef Wang, Z., Zhao, P., Qian, C., & Chen, S. (2016). Location-aware channel estimation enhanced TDD based massive MIMO. IEEE Access, 4, 7828–7840.CrossRef
10.
go back to reference Zhang, Q., Jin, S., McKay, M., Morales-Jimenez, D., & Zhu, H. (2015). Power allocation schemes for multicell massive MIMO systems. IEEE Transactions on Wireless Communications, 14(11), 5941–5955.CrossRef Zhang, Q., Jin, S., McKay, M., Morales-Jimenez, D., & Zhu, H. (2015). Power allocation schemes for multicell massive MIMO systems. IEEE Transactions on Wireless Communications, 14(11), 5941–5955.CrossRef
11.
go back to reference Zarei, S., Aulin, J., Gerstacker, W., & Schober, R. (2017). Max-min multicell-aware precoding and power allocation for downlink massive MIMO systems. IEEE Signal Processing Letters, 24(10), 1433–1437.CrossRef Zarei, S., Aulin, J., Gerstacker, W., & Schober, R. (2017). Max-min multicell-aware precoding and power allocation for downlink massive MIMO systems. IEEE Signal Processing Letters, 24(10), 1433–1437.CrossRef
12.
go back to reference Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef
13.
go back to reference Rasti, M., & Sharafat, A.-R. (2011). Distributed uplink power control with soft removal for wireless networks. IEEE Transactions on Communications, 59(3), 833–843.CrossRef Rasti, M., & Sharafat, A.-R. (2011). Distributed uplink power control with soft removal for wireless networks. IEEE Transactions on Communications, 59(3), 833–843.CrossRef
14.
go back to reference Fernandes, F., Ashikhmin, A., & Marzetta, T. (2013). Inter-cell interference in noncooperative TDD large scale antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 192–201.CrossRef Fernandes, F., Ashikhmin, A., & Marzetta, T. (2013). Inter-cell interference in noncooperative TDD large scale antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 192–201.CrossRef
Metadata
Title
Massive MIMO pilot assignment optimization based on total capacity
Authors
José Carlos Marinello
Cristiano Magalhães Panazio
Taufik Abrão
Publication date
12-04-2018
Publisher
Springer US
Published in
Telecommunication Systems / Issue 4/2018
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-018-0452-2