Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2011

01-06-2011 | Research Paper

Material interpolation schemes for unified topology and multi-material optimization

Authors: Christian Frier Hvejsel, Erik Lund

Published in: Structural and Multidisciplinary Optimization | Issue 6/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents two multi-material interpolation schemes as direct generalizations of the well-known SIMP and RAMP material interpolation schemes originally developed for isotropic mixtures of two isotropic material phases. The new interpolation schemes provide generally applicable interpolation schemes between an arbitrary number of pre-defined materials with given (anisotropic) properties. The method relies on a large number of sparse linear constraints to enforce the selection of at most one material in each design subdomain. Topology and multi-material optimization is formulated within a unified parametrization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451CrossRef Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451CrossRef
go back to reference Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202 Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202
go back to reference Bendsøe M, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe M, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
go back to reference Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef
go back to reference Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer
go back to reference Bendsøe M, Díaz A, Lipton R, Taylor J (1995) Optimal design of material properties and material distribution for multiple loading conditions. Int J Numer Methods Eng 38(7):1149–1170CrossRef Bendsøe M, Díaz A, Lipton R, Taylor J (1995) Optimal design of material properties and material distribution for multiple loading conditions. Int J Numer Methods Eng 38(7):1149–1170CrossRef
go back to reference Bendsøe M, Lund E, Olhoff N, Sigmund O (2005) Topology optimization - broadening the areas of application. Control Cybern 34(1):7–35MATH Bendsøe M, Lund E, Olhoff N, Sigmund O (2005) Topology optimization - broadening the areas of application. Control Cybern 34(1):7–35MATH
go back to reference Bodnár G (2009) Visualization and interpretation tools for free material optimization results. In: 8th world congress on structural and multidisciplinary optimization, Lisbon, Portugal Bodnár G (2009) Visualization and interpretation tools for free material optimization results. In: 8th world congress on structural and multidisciplinary optimization, Lisbon, Portugal
go back to reference Bruyneel M (2011) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidisc Optim 43:17–27. doi:10.1007/s00158-010-0548-0 CrossRef Bruyneel M (2011) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidisc Optim 43:17–27. doi:10.​1007/​s00158-010-0548-0 CrossRef
go back to reference Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef
go back to reference Gill P, Murray W, Saunders M (2008) User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming, Report NA 05-2, Department of Mathematics, University of California, San Diego Gill P, Murray W, Saunders M (2008) User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming, Report NA 05-2, Department of Mathematics, University of California, San Diego
go back to reference Hörnlein H, Kočvara M, Werner R (2001) Material optimization: bridging the gap between conceptual and preliminary design. Aerosp Sci Technol 5(8):541–554MATHCrossRef Hörnlein H, Kočvara M, Werner R (2001) Material optimization: bridging the gap between conceptual and preliminary design. Aerosp Sci Technol 5(8):541–554MATHCrossRef
go back to reference Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidisc Optim (submitted) Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidisc Optim (submitted)
go back to reference Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef
go back to reference Muñoz E (2010) Global optimization for structural design by generalized benders’ decomposition. PhD thesis, Technical University of Denmark, Department of Mathematics, Kgs. Lyngby, Denmark Muñoz E (2010) Global optimization for structural design by generalized benders’ decomposition. PhD thesis, Technical University of Denmark, Department of Mathematics, Kgs. Lyngby, Denmark
go back to reference Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3–4):225–230MATHCrossRef Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3–4):225–230MATHCrossRef
go back to reference Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidisc Optim 30(6):413–421CrossRef Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidisc Optim 30(6):413–421CrossRef
go back to reference Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
go back to reference Stegmann J (2004) Analysis and optimization of laminated composite shell structures. PhD thesis, Department of Mechanical Engineering, Aalborg University Stegmann J (2004) Analysis and optimization of laminated composite shell structures. PhD thesis, Department of Mechanical Engineering, Aalborg University
go back to reference Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027MATHCrossRef Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027MATHCrossRef
go back to reference Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef
go back to reference Stolpe M, Svanberg K (2003) Modelling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739MathSciNetMATHCrossRef Stolpe M, Svanberg K (2003) Modelling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739MathSciNetMATHCrossRef
go back to reference Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef
go back to reference Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555MathSciNetMATHCrossRef Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555MathSciNetMATHCrossRef
go back to reference Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef
go back to reference Wang M, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37(3):321–337CrossRef Wang M, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37(3):321–337CrossRef
go back to reference Wang M, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941CrossRef Wang M, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941CrossRef
go back to reference Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496MATHCrossRef Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496MATHCrossRef
go back to reference Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23(1):49–62CrossRef Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23(1):49–62CrossRef
Metadata
Title
Material interpolation schemes for unified topology and multi-material optimization
Authors
Christian Frier Hvejsel
Erik Lund
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Structural and Multidisciplinary Optimization / Issue 6/2011
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-011-0625-z

Other articles of this Issue 6/2011

Structural and Multidisciplinary Optimization 6/2011 Go to the issue

Premium Partners