Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Materials Aspects of Micro- and Nanoelectromechanical Systems

Author : Christian A. Zorman

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the more significant technological achievements during the last twenty years has been the development of the field of microelectromechanical systems (MEMS) and its offshoot, nanoelectromechanical systems (NEMS). These developments were made possible by significant advancements in the materials and processing technologies used in the fabrication of MEMS and NEMS devices. While initial developments capitalized on a mature Si infrastructure built for the integrated circuit (IC) industry, recent advances have come about using materials and processes not typically associated with IC fabrication, a trend that is likely to continue as new application areas emerge.
A well-rounded understanding of MEMS and NEMS technology requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance and dictate fabrication approaches. An understanding of the materials used in MEMS and NEMS involves an understanding of material systems, since such devices are rarely constructed of a single material, but rather a collection of materials working in conjunction with each other to provide critical functions. It is from this perspective that the following chapter is constructed. This chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a single text of significant size. It does, however, present a selection of some of the more popular materials, as well as those that illustrate the importance of viewing MEMS and NEMS in terms of material systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.1
go back to reference C.S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954) C.S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954)
7.2
go back to reference A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996) A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)
7.3
go back to reference D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single-crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vacuum Sci. Technol. B 15, 2760–2763 (1997) D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single-crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vacuum Sci. Technol. B 15, 2760–2763 (1997)
7.4
go back to reference T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer Academic, Boston 1988) T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer Academic, Boston 1988)
7.5
go back to reference J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications, Mater. Res. Symp. Proc. 605, 31–36 (2000) J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications, Mater. Res. Symp. Proc. 605, 31–36 (2000)
7.6
go back to reference L. Cao, T.S. Kin, S.C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuat. 80, 273–279 (2000) L. Cao, T.S. Kin, S.C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuat. 80, 273–279 (2000)
7.7
go back to reference H. Guckel, T. Randazzo, D.W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983) H. Guckel, T. Randazzo, D.W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)
7.8
go back to reference R.T. Howe, R.S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983) R.T. Howe, R.S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)
7.9
go back to reference X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998) X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)
7.10
go back to reference J. Yang, H. Kahn, A.-Q. He, S.M. Phillips, A.H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9, 485–494 (2000) J. Yang, H. Kahn, A.-Q. He, S.M. Phillips, A.H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9, 485–494 (2000)
7.11
go back to reference T.J. Kang, H.Y. Lee, Y.H. Kim: Reduction of sheet resistance and low-thermal budget relaxation of stress gradients in polysilicon microcantilever beams using nickel-silicides, J. Microelectromech. Syst. 16, 279–288 (2007) T.J. Kang, H.Y. Lee, Y.H. Kim: Reduction of sheet resistance and low-thermal budget relaxation of stress gradients in polysilicon microcantilever beams using nickel-silicides, J. Microelectromech. Syst. 16, 279–288 (2007)
7.12
go back to reference P. Gennissen, M. Bartek, P.J. French, P.M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications, Sens. Actuat. A62, 636–645 (1997) P. Gennissen, M. Bartek, P.J. French, P.M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications, Sens. Actuat. A62, 636–645 (1997)
7.13
go back to reference P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: Deposition, structuring, and mechanical characterization, Sens. Actuat. A54, 674–678 (1996) P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: Deposition, structuring, and mechanical characterization, Sens. Actuat. A54, 674–678 (1996)
7.14
go back to reference S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999) S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)
7.15
go back to reference K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 57–60 K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 57–60
7.16
go back to reference T. Abe, M.L. Reed: Low strain sputtered polysilicon for micromechanical structures. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 258–262 T. Abe, M.L. Reed: Low strain sputtered polysilicon for micromechanical structures. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 258–262
7.17
go back to reference K. Honer, G.T.A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuat. A 91, 392–403 (2001) K. Honer, G.T.A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuat. A 91, 392–403 (2001)
7.18
go back to reference J. Gaspar, T. Adrega, V. Chu, J.P. Conde: Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 125–128 J. Gaspar, T. Adrega, V. Chu, J.P. Conde: Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 125–128
7.19
go back to reference S.B. Patil, V. Chu, J.P. Conde: Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer, J. Vacuum Sci. Technol. B 25, 455–458 (2007) S.B. Patil, V. Chu, J.P. Conde: Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer, J. Vacuum Sci. Technol. B 25, 455–458 (2007)
7.20
go back to reference R. Anderson, R.S. Muller, C.W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994) R. Anderson, R.S. Muller, C.W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)
7.21
go back to reference W. Lang, P. Steiner, H. Sandmaier: Porous silicon: A novel material for microsystems, Sens. Actuat. A 51, 31–36 (1995) W. Lang, P. Steiner, H. Sandmaier: Porous silicon: A novel material for microsystems, Sens. Actuat. A 51, 31–36 (1995)
7.22
go back to reference R. He, C.J. Kim: On-chip hermetic packaging enabled by post-deposition electrochemical etching of polysilicon. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 544–547 R. He, C.J. Kim: On-chip hermetic packaging enabled by post-deposition electrochemical etching of polysilicon. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 544–547
7.23
go back to reference R. He, C.J. Kim: On-wafer monolithic encapsulation by surface micromachining with porous polysilicon shell, J. Microelectromech. Syst. 16, 462–472 (2007) R. He, C.J. Kim: On-wafer monolithic encapsulation by surface micromachining with porous polysilicon shell, J. Microelectromech. Syst. 16, 462–472 (2007)
7.24
go back to reference S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983) S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)
7.25
go back to reference W.A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vacuum Sci. Technol. 21, 1064–1081 (1977) W.A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vacuum Sci. Technol. 21, 1064–1081 (1977)
7.26
go back to reference J.S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuat. A 21/23, 971–977 (1990) J.S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuat. A 21/23, 971–977 (1990)
7.27
go back to reference A. Yasseen, J.D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999) A. Yasseen, J.D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)
7.28
go back to reference R. Liu, M.J. Vasile, D.J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999) R. Liu, M.J. Vasile, D.J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)
7.29
go back to reference B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone: Poisson’s ratio of low-temperature PECVD silicon nitride thin films, J. Microelectromech. Syst. 16, 622–627 (2007) B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone: Poisson’s ratio of low-temperature PECVD silicon nitride thin films, J. Microelectromech. Syst. 16, 622–627 (2007)
7.30
go back to reference B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuat. A 51, 71–75 (1995) B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuat. A 51, 71–75 (1995)
7.31
go back to reference M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer X-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982) M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer X-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982)
7.32
go back to reference P.P. Tsai, I.-C. Chen, C.J. Ho: Ultralow power carbon monoxide microsensor by micromachining techniques, Sens. Actuat. B 76, 380–387 (2001) P.P. Tsai, I.-C. Chen, C.J. Ho: Ultralow power carbon monoxide microsensor by micromachining techniques, Sens. Actuat. B 76, 380–387 (2001)
7.33
go back to reference P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuat. A 58, 149–157 (1997) P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuat. A 58, 149–157 (1997)
7.34
go back to reference B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999) B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)
7.35
go back to reference A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson: Post-CMOS integration of germanium microstructures. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 630–637 A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson: Post-CMOS integration of germanium microstructures. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 630–637
7.36
go back to reference A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe: Post-CMOS modular integration of poly-SiGe microstructures using poly-Ge sacraficial layers. In: Tech. Digest – Solid State Sens. Actuat. Workshop (Transducers Research Foundation, Cleveland 2000) pp. 18–21 A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe: Post-CMOS modular integration of poly-SiGe microstructures using poly-Ge sacraficial layers. In: Tech. Digest – Solid State Sens. Actuat. Workshop (Transducers Research Foundation, Cleveland 2000) pp. 18–21
7.37
go back to reference S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998) S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)
7.38
go back to reference S. Sedky, A. Witvrouw, K. Baert: Poly SiGe, a promising material for mems monolithic integration with the driving electronics, Sens. Actuat. A 97/98, 503–511 (2002) S. Sedky, A. Witvrouw, K. Baert: Poly SiGe, a promising material for mems monolithic integration with the driving electronics, Sens. Actuat. A 97/98, 503–511 (2002)
7.39
go back to reference C.W. Low, T.J.K. Liu, R. Howe: Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications, J. Microelectromech. Syst. 16, 68–77 (2007) C.W. Low, T.J.K. Liu, R. Howe: Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications, J. Microelectromech. Syst. 16, 68–77 (2007)
7.40
go back to reference S. Sedky, A. Bayoumy, A. Alaa, A. Nagy, A. Witvrouw: Optimal conditions for micromachining Si1−xGex at 210∘C, J. Microelectromech. Syst. 16, 581–588 (2007) S. Sedky, A. Bayoumy, A. Alaa, A. Nagy, A. Witvrouw: Optimal conditions for micromachining Si1−xGex at 210C, J. Microelectromech. Syst. 16, 581–588 (2007)
7.41
go back to reference J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.-J. King, R.T. Howe: High aspect ratio polysilicon-germanium microstructures. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334 J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.-J. King, R.T. Howe: High aspect ratio polysilicon-germanium microstructures. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334
7.42
go back to reference P. Van Gerwen, T. Slater, J.B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-Germanium30% for Thermopiles, Sens. Actuat. A 53, 325–329 (1996) P. Van Gerwen, T. Slater, J.B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-Germanium30% for Thermopiles, Sens. Actuat. A 53, 325–329 (1996)
7.43
go back to reference D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Shaffner, A. Walson, R.Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Freq. Microw. Commun. Eng. 9, 348–361 (1999) D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Shaffner, A. Walson, R.Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Freq. Microw. Commun. Eng. 9, 348–361 (1999)
7.44
go back to reference C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuat. 79, 71–75 (2000) C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuat. 79, 71–75 (2000)
7.45
go back to reference A. Reddy, H. Kahn, A.H. Heuer: A MEMS-based evaluation of the mechanical properties of metallic thin films, J. Microelectromech. Syst. 16, 650–658 (2007) A. Reddy, H. Kahn, A.H. Heuer: A MEMS-based evaluation of the mechanical properties of metallic thin films, J. Microelectromech. Syst. 16, 650–658 (2007)
7.46
go back to reference M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004) M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004)
7.47
go back to reference E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald: Bulk micromachined titanium microneedles, J. Microelectromech. Syst. 16, 289–295 (2007) E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald: Bulk micromachined titanium microneedles, J. Microelectromech. Syst. 16, 289–295 (2007)
7.48
go back to reference C.L. Shih, B.K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001) C.L. Shih, B.K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001)
7.49
go back to reference G. Hahm, H. Kahn, S.M. Phillips, A.H. Heuer: Fully microfabricated silicon spring biased shape memory actuated microvalve. In: Proc. Solid State Sens. Actuat. Workshop (Transducers Research Foundation, San Diego 2000) pp. 230–233 G. Hahm, H. Kahn, S.M. Phillips, A.H. Heuer: Fully microfabricated silicon spring biased shape memory actuated microvalve. In: Proc. Solid State Sens. Actuat. Workshop (Transducers Research Foundation, San Diego 2000) pp. 230–233
7.50
go back to reference S.D. Leith, D.T. Schwartz: High-rate through-mold electrodeposition of thick (> 200 micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999) S.D. Leith, D.T. Schwartz: High-rate through-mold electrodeposition of thick (> 200 micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999)
7.51
go back to reference N. Rajan, M. Mehregany, C.A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999) N. Rajan, M. Mehregany, C.A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999)
7.52
go back to reference T. Pornsin-Sirirak, Y.C. Tai, H. Nassef, C.M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuat. A 89, 95–103 (2001) T. Pornsin-Sirirak, Y.C. Tai, H. Nassef, C.M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuat. A 89, 95–103 (2001)
7.53
go back to reference C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuat. A 97/98, 410–415 (2002) C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuat. A 97/98, 410–415 (2002)
7.54
go back to reference M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuat. 74, 56–59 (1999) M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuat. 74, 56–59 (1999)
7.55
go back to reference Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001) Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)
7.56
go back to reference D. Young, J.D. Du, C.A. Zorman, W.H. Ko: High-temperature single-crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004) D. Young, J.D. Du, C.A. Zorman, W.H. Ko: High-temperature single-crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)
7.57
go back to reference C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002) C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)
7.58
go back to reference L. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002) L. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)
7.59
go back to reference C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996) C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)
7.60
go back to reference C.H. Wu, C.A. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355/356, 179–183 (1999) C.H. Wu, C.A. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355/356, 179–183 (1999)
7.61
go back to reference P. Sarro: Silicon carbide as a new MEMS technology, Sens. Actuat. 82, 210–218 (2000) P. Sarro: Silicon carbide as a new MEMS technology, Sens. Actuat. 82, 210–218 (2000)
7.62
go back to reference N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J.M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surf. Coatings Technol. 125, 246–250 (2000) N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J.M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surf. Coatings Technol. 125, 246–250 (2000)
7.63
go back to reference X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004) X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)
7.64
go back to reference J. Trevino, X.A. Fu, M. Mehregany, C. Zorman: Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 451–454 J. Trevino, X.A. Fu, M. Mehregany, C. Zorman: Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 451–454
7.65
go back to reference R.S. Okojie, A.A. Ned, A.D. Kurtz: Operation of a 6H-SiC pressure sensor at 500∘C, Sens. Actuat. A 66, 200–204 (1998) R.S. Okojie, A.A. Ned, A.D. Kurtz: Operation of a 6H-SiC pressure sensor at 500C, Sens. Actuat. A 66, 200–204 (1998)
7.66
go back to reference K. Lohner, K.S. Chen, A.A. Ayon, M.S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soc. Symp. Proc. 546, 85–90 (1999) K. Lohner, K.S. Chen, A.A. Ayon, M.S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soc. Symp. Proc. 546, 85–90 (1999)
7.67
go back to reference K.O. Min, S. Tanaka, M. Esashi: Micro/nano glass press molding using silicon carbide molds fabricated by silicon lost molding. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 475–478 K.O. Min, S. Tanaka, M. Esashi: Micro/nano glass press molding using silicon carbide molds fabricated by silicon lost molding. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 475–478
7.68
go back to reference S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001) S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001)
7.69
go back to reference L.A. Liew, W. Zhang, V.M. Bright, A. Linan, M.L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuat. A 89, 64–70 (2001) L.A. Liew, W. Zhang, V.M. Bright, A. Linan, M.L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuat. A 89, 64–70 (2001)
7.70
go back to reference A.J. Fleischman, S. Roy, C.A. Zorman, M. Mehregany: Polycrystalline silicon carbide for surface micromachining. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 234–238 A.J. Fleischman, S. Roy, C.A. Zorman, M. Mehregany: Polycrystalline silicon carbide for surface micromachining. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 234–238
7.71
go back to reference A.J. Fleischman, X. Wei, C.A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264–268, 885–888 (1998) A.J. Fleischman, X. Wei, C.A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264–268, 885–888 (1998)
7.72
go back to reference G. Beheim, C.S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6 (2000) G. Beheim, C.S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6 (2000)
7.73
go back to reference W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, O.M. Jadaan: Fracture strength of single-crystal silicon carbide microspecimens at 24∘C and 1000∘C, J. Microelectromech. Syst. 17, 244–254 (2008) W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, O.M. Jadaan: Fracture strength of single-crystal silicon carbide microspecimens at 24C and 1000C, J. Microelectromech. Syst. 17, 244–254 (2008)
7.74
go back to reference A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron Dev. Lett. 21, 164–166 (2000) A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron Dev. Lett. 21, 164–166 (2000)
7.75
go back to reference X. Song, S. Rajgolpal, J.M. Melzak, C.A. Zorman, M. Mehregany: Development of a multilayer sic surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389–393, 755–758 (2001) X. Song, S. Rajgolpal, J.M. Melzak, C.A. Zorman, M. Mehregany: Development of a multilayer sic surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389–393, 755–758 (2001)
7.76
go back to reference D. Gao, R.T. Howe, R. Maboudian: High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma, Appl. Phys. Lett. 82, 1742–1744 (2004) D. Gao, R.T. Howe, R. Maboudian: High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma, Appl. Phys. Lett. 82, 1742–1744 (2004)
7.77
go back to reference D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004) D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)
7.78
go back to reference X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes: Nanodevice motion at microwave frequenies, Nature 421, 496 (2003)CrossRef X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes: Nanodevice motion at microwave frequenies, Nature 421, 496 (2003)CrossRef
7.79
go back to reference T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000) T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)
7.80
go back to reference H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuat. 73, 24–29 (1999) H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuat. 73, 24–29 (1999)
7.81
go back to reference P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic components in diamond. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 190–193 P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic components in diamond. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 190–193
7.82
go back to reference H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuat. 78, 41–47 (1999) H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuat. 78, 41–47 (1999)
7.83
go back to reference M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems. In: Proc. 8th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 1995) M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems. In: Proc. 8th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 1995)
7.84
go back to reference R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999) R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)
7.85
go back to reference Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang: Diamond surface micromachining technology, Diam. Relat. Mater. 8, 1834–1837 (1999) Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang: Diamond surface micromachining technology, Diam. Relat. Mater. 8, 1834–1837 (1999)
7.86
go back to reference X.D. Wang, G.D. Hong, J. Zhang, B.L. Lin, H.Q. Gong, W.Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002) X.D. Wang, G.D. Hong, J. Zhang, B.L. Lin, H.Q. Gong, W.Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002)
7.87
go back to reference J. Wang, J.E. Butler, D.S.Y. Hsu, C.T.C. Nguyen: CVD polycrystalline diamond high-Q micromechanical resonators. In: Proc. 15th Int. Conf. Micrelectromech. Syst. (IEEE, Piscataway 2001) pp. 657–660 J. Wang, J.E. Butler, D.S.Y. Hsu, C.T.C. Nguyen: CVD polycrystalline diamond high-Q micromechanical resonators. In: Proc. 15th Int. Conf. Micrelectromech. Syst. (IEEE, Piscataway 2001) pp. 657–660
7.88
go back to reference J. Wang, J.E. Butler, T. Feygelson, C.T.C. Nguyen: 1.51 GHz nanocrystalline diamond micromechanical disk resonator with material mismatched isolating support. In: Proc. 17th IEEE Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2004) pp. 641–644 J. Wang, J.E. Butler, T. Feygelson, C.T.C. Nguyen: 1.51 GHz nanocrystalline diamond micromechanical disk resonator with material mismatched isolating support. In: Proc. 17th IEEE Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2004) pp. 641–644
7.89
go back to reference N. Sepulveda, D. Aslam, J.P. Sullivan: Polycrystalline diamond MEMS resonator technology for sensor applications, Diam. Relat. Mater. 15, 398–403 (2006) N. Sepulveda, D. Aslam, J.P. Sullivan: Polycrystalline diamond MEMS resonator technology for sensor applications, Diam. Relat. Mater. 15, 398–403 (2006)
7.90
go back to reference L. Sekaric, J.M. Parpia, H.G. Craighead, T. Feygelson, B.H. Houston, J.E. Butler: Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett. 81, 4455–4457 (2002) L. Sekaric, J.M. Parpia, H.G. Craighead, T. Feygelson, B.H. Houston, J.E. Butler: Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett. 81, 4455–4457 (2002)
7.91
go back to reference A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1961 (2001) A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1961 (2001)
7.92
go back to reference X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004) X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)
7.93
go back to reference S. Srinivasan, J. Hiller, B. Kabius, O. Auciello: Piezoelectric/untrananocrytalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems, Appl. Phys. Lett. 90, 134101-1–134101-3 (2007) S. Srinivasan, J. Hiller, B. Kabius, O. Auciello: Piezoelectric/untrananocrytalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems, Appl. Phys. Lett. 90, 134101-1–134101-3 (2007)
7.94
go back to reference H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, C.A. Zorman, M. Mehregany: Elasticity, strength and toughness of single-crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amporphous carbon, Appl. Phys. Lett. 89, 073111-1–073111-3 (2006) H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, C.A. Zorman, M. Mehregany: Elasticity, strength and toughness of single-crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amporphous carbon, Appl. Phys. Lett. 89, 073111-1–073111-3 (2006)
7.95
go back to reference X. Xiao, J. Wang, C. Liu, J.A. Carlisle, B. Mech, R. Greenberg, D. Guven, R. Freda, M.S. Humayun, J. Weiland, O. Auciello: In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips, J. Biomed. Mater. Res. B 77B, 273–281 (2006) X. Xiao, J. Wang, C. Liu, J.A. Carlisle, B. Mech, R. Greenberg, D. Guven, R. Freda, M.S. Humayun, J. Weiland, O. Auciello: In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips, J. Biomed. Mater. Res. B 77B, 273–281 (2006)
7.96
go back to reference F.J. Hernandez-Guillen, K. Janischowsky, W. Ebert, E. Kohn: Nanocrystalline diamond films for mechanical applications, Phys. Stat. Solidi (a) 201, 2553–2557 (2004) F.J. Hernandez-Guillen, K. Janischowsky, W. Ebert, E. Kohn: Nanocrystalline diamond films for mechanical applications, Phys. Stat. Solidi (a) 201, 2553–2557 (2004)
7.97
go back to reference T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997) T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997)
7.98
go back to reference J.P. Sullivan, T.A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001) J.P. Sullivan, T.A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001)
7.99
go back to reference J.R. Webster, C.W. Dyck, J.P. Sullivan, T.A. Friedmann, A.J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004) J.R. Webster, C.W. Dyck, J.P. Sullivan, T.A. Friedmann, A.J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004)
7.100
go back to reference K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994) K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)
7.101
go back to reference K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996) K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996)
7.102
go back to reference K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994) K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994)
7.103
go back to reference A. Dehe, K. Fricke, K. Mutamba, H.L. Hartnagel: A piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology, J. Micromech. Microeng. 5, 139–142 (1995) A. Dehe, K. Fricke, K. Mutamba, H.L. Hartnagel: A piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology, J. Micromech. Microeng. 5, 139–142 (1995)
7.104
go back to reference A. Dehe, K. Fricke, H.L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuat. A 46/47, 432–436 (1995) A. Dehe, K. Fricke, H.L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuat. A 46/47, 432–436 (1995)
7.105
go back to reference A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H.L. Hartnagel: III-V compound semiconductor micromachined actuators for long resonator tunable fabry-perot detectors, Sens. Actuat. A 68, 365–371 (1998) A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H.L. Hartnagel: III-V compound semiconductor micromachined actuators for long resonator tunable fabry-perot detectors, Sens. Actuat. A 68, 365–371 (1998)
7.106
go back to reference T. Lalinsky, S. Hascik, Z. Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuat. 76, 241–246 (1999) T. Lalinsky, S. Hascik, Z. Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuat. 76, 241–246 (1999)
7.107
go back to reference T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuat. 85, 365–370 (2000) T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuat. 85, 365–370 (2000)
7.108
go back to reference H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002) H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)
7.109
go back to reference T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997) T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)
7.110
go back to reference J. Miao, B.L. Weiss, H.L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003) J. Miao, B.L. Weiss, H.L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003)
7.111
go back to reference C. Seassal, J.L. Leclercq, P. Viktorovitch: Fabrication of InP-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996) C. Seassal, J.L. Leclercq, P. Viktorovitch: Fabrication of InP-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)
7.112
go back to reference J. Leclerq, R.P. Ribas, J.M. Karam, P. Viktorovitch: III-V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998) J. Leclerq, R.P. Ribas, J.M. Karam, P. Viktorovitch: III-V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998)
7.113
go back to reference H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111)A heteroepitaxial systems, Physica E 13, 1163–1167 (2002) H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111)A heteroepitaxial systems, Physica E 13, 1163–1167 (2002)
7.114
go back to reference K. Deng, P. Kumar, L. Li, D.L. Devoe: Piezoelectric disk resonators based on epitaxial AlGaAs films, J. Microelectromech. Syst. 16, 155–162 (2007) K. Deng, P. Kumar, L. Li, D.L. Devoe: Piezoelectric disk resonators based on epitaxial AlGaAs films, J. Microelectromech. Syst. 16, 155–162 (2007)
7.115
go back to reference C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 553–559 (1996) C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 553–559 (1996)
7.116
go back to reference B. Xu, L.E. Cross, J.J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377/378, 712–718 (2000) B. Xu, L.E. Cross, J.J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377/378, 712–718 (2000)
7.117
go back to reference E. Hong, S. Trolier-McKinstry, R.L. Smith, S.V. Krishnaswamy, C.B. Freidhoff: Design of MEMS PZT circular diaphragm actuators to generate large deflections, J. Microelectromech. Syst. 15, 832–839 (2006) E. Hong, S. Trolier-McKinstry, R.L. Smith, S.V. Krishnaswamy, C.B. Freidhoff: Design of MEMS PZT circular diaphragm actuators to generate large deflections, J. Microelectromech. Syst. 15, 832–839 (2006)
7.118
go back to reference S.P. Beeby, A. Blackburn, N.M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999) S.P. Beeby, A. Blackburn, N.M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999)
7.119
go back to reference K. Tonisch, C. Buchheim, F. Niebelschütz, M. Donahue, R. Goldhahn, V. Cimalla, O. Ambacher: Piezoelectric actuation of all-nitride MEMS, Phys. Stat. Solidi (c) 5, 1910–1913 (2008) K. Tonisch, C. Buchheim, F. Niebelschütz, M. Donahue, R. Goldhahn, V. Cimalla, O. Ambacher: Piezoelectric actuation of all-nitride MEMS, Phys. Stat. Solidi (c) 5, 1910–1913 (2008)
7.120
go back to reference C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio: AlN on polysilicon piezoelectric cantilevers for sensors/actuators, Microelectron. Eng. 86, 1204–1207 (2009) C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio: AlN on polysilicon piezoelectric cantilevers for sensors/actuators, Microelectron. Eng. 86, 1204–1207 (2009)
7.121
go back to reference M. Schneider, A. Bittner, U. Schmid: Thickness dependence of Young’s modulus and residual stress of sputtered aluminum nitride thin films, Appl. Phys. Lett. 105, 201912 (2014) M. Schneider, A. Bittner, U. Schmid: Thickness dependence of Young’s modulus and residual stress of sputtered aluminum nitride thin films, Appl. Phys. Lett. 105, 201912 (2014)
7.122
go back to reference G. Piazza, P.J. Stephanou, A.P. Pisano: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators, J. Microelectromech. Syst. 15, 1406–1418 (2006) G. Piazza, P.J. Stephanou, A.P. Pisano: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators, J. Microelectromech. Syst. 15, 1406–1418 (2006)
7.123
go back to reference N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza: Piezoelectric aluminum nitride nanoelectromechanical actuators, Appl. Phys. Lett. 95, 053106 (2009) N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza: Piezoelectric aluminum nitride nanoelectromechanical actuators, Appl. Phys. Lett. 95, 053106 (2009)
7.124
go back to reference R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defaÿ, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films, Appl. Phys. Lett. 95, 103111 (2009) R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defaÿ, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films, Appl. Phys. Lett. 95, 103111 (2009)
7.125
go back to reference P. Ramesh, S. Krishnamoorthy, S. Rajan, G.N. Washington: Fabrication and characterization of a piezoelectric gallium nitride switch for optical MEMS applications, Smart Mater. Struct. 21, 094003 (2012) P. Ramesh, S. Krishnamoorthy, S. Rajan, G.N. Washington: Fabrication and characterization of a piezoelectric gallium nitride switch for optical MEMS applications, Smart Mater. Struct. 21, 094003 (2012)
7.126
go back to reference J. Lv, Z. Yang, G. Member: Yan, W. Lin, Y. Cai, B. Zhang, K.J. Chen: Fabrication of large-area suspended MEMS structures using GaN-on-Si platform, IEEE Electr. Dev. Lett. 30, 1045–1047 (2009) J. Lv, Z. Yang, G. Member: Yan, W. Lin, Y. Cai, B. Zhang, K.J. Chen: Fabrication of large-area suspended MEMS structures using GaN-on-Si platform, IEEE Electr. Dev. Lett. 30, 1045–1047 (2009)
7.127
go back to reference M. Rais-Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Théron, Y. Cordier, L. Buchaillot: Gallium nitride as an electromechanical material, J. Microelectromech. Syst. 23, 1252–1271 (2014) M. Rais-Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Théron, Y. Cordier, L. Buchaillot: Gallium nitride as an electromechanical material, J. Microelectromech. Syst. 23, 1252–1271 (2014)
7.128
go back to reference A.B. Amar, M. Faucher, V. Brandli, Y. Cordier, D. Théron: Young’s modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application, Phys. Stat. Solidi (a) 211, 1655–1659 (2014) A.B. Amar, M. Faucher, V. Brandli, Y. Cordier, D. Théron: Young’s modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application, Phys. Stat. Solidi (a) 211, 1655–1659 (2014)
7.129
go back to reference T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernández-Guillén, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, E. Kohn: Piezoelectric GaN sensor structures, IEEE Electron Dev. Lett. 27, 309–312 (2006) T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernández-Guillén, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, E. Kohn: Piezoelectric GaN sensor structures, IEEE Electron Dev. Lett. 27, 309–312 (2006)
7.130
go back to reference C. Shearwood, M.A. Harradine, T.S. Birch, J.C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996) C. Shearwood, M.A. Harradine, T.S. Birch, J.C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996)
7.131
go back to reference F. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuat. 79, 194–203 (2000) F. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuat. 79, 194–203 (2000)
7.132
go back to reference H. Yousef, K. Hjort, M. Lindberg: Vertical thermopiles embedded in a polyimide-based flexible printed circuit board, J. Microelectromech. Syst. 16, 1341–1348 (2007) H. Yousef, K. Hjort, M. Lindberg: Vertical thermopiles embedded in a polyimide-based flexible printed circuit board, J. Microelectromech. Syst. 16, 1341–1348 (2007)
7.133
go back to reference D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuat. A 99, 85–91 (2002) D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuat. A 99, 85–91 (2002)
7.134
go back to reference A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002) A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)
7.135
go back to reference T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuat. A 90, 203–211 (2001) T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuat. A 90, 203–211 (2001)
7.136
go back to reference T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuat. B 83, 8–14 (2002) T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuat. B 83, 8–14 (2002)
7.137
go back to reference T. Stieglitz, M. Schuettler, K.P. Koch: Implantable Biomedical Microsystems for neural prostheses, IEEE Eng. Med. Biol. 24, 58–65 (2005) T. Stieglitz, M. Schuettler, K.P. Koch: Implantable Biomedical Microsystems for neural prostheses, IEEE Eng. Med. Biol. 24, 58–65 (2005)
7.138
go back to reference H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuat. A 64, 33–39 (1998) H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuat. A 64, 33–39 (1998)
7.139
go back to reference H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997) H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)
7.140
go back to reference E.H. Conradie, D.F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002) E.H. Conradie, D.F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002)
7.141
go back to reference C.T. Pan, H. Yang, S.C. Shen, M.C. Chou, H.P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002) C.T. Pan, H. Yang, S.C. Shen, M.C. Chou, H.P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)
7.142
go back to reference P.A. Stupar, A.P. Pisano: Silicon, parylene, and silicon/parylene micro-needles for strength and toughness. In: Tech. Digest 11th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 2001) pp. 1368–1389 P.A. Stupar, A.P. Pisano: Silicon, parylene, and silicon/parylene micro-needles for strength and toughness. In: Tech. Digest 11th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 2001) pp. 1368–1389
7.143
go back to reference X. Yang, J.M. Yang, Y.C. Tai, C.M. Ho: Micromachined membrane particle filters, Sens. Actuat. 73, 184–191 (1999) X. Yang, J.M. Yang, Y.C. Tai, C.M. Ho: Micromachined membrane particle filters, Sens. Actuat. 73, 184–191 (1999)
7.144
go back to reference J.M. Zara, S.W. Smith: Optical scanner using a MEMS actuator, Sens. Actuat. A 102, 176–184 (2002) J.M. Zara, S.W. Smith: Optical scanner using a MEMS actuator, Sens. Actuat. A 102, 176–184 (2002)
7.145
go back to reference H.S. Noh, P.J. Hesketh, G.C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002) H.S. Noh, P.J. Hesketh, G.C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)
7.146
go back to reference Y. Suzuki, Y.C. Tai: Micromachined high aspect ratio parylene spring and its application to low frequency accelerometers, J. Microelectromech. Syst. 15, 1364–1370 (2006) Y. Suzuki, Y.C. Tai: Micromachined high aspect ratio parylene spring and its application to low frequency accelerometers, J. Microelectromech. Syst. 15, 1364–1370 (2006)
7.147
go back to reference T.J. Yao, X. Yang, Y.C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuat. A 97/98, 771–775 (2002) T.J. Yao, X. Yang, Y.C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuat. A 97/98, 771–775 (2002)
7.148
go back to reference P.-J. Chen, D.C. Rodger, E.M. Meng, M.S. Humayun, Y.C. Tai: Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation, J. Microelectromech. Syst. 16, 223–231 (2007) P.-J. Chen, D.C. Rodger, E.M. Meng, M.S. Humayun, Y.C. Tai: Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation, J. Microelectromech. Syst. 16, 223–231 (2007)
7.149
go back to reference D.C.Y.C. Rodger: Tai: Microelectronic packaging for retinal prosthesis, IEEE Eng. Med. Biol. 24, 52–57 (2005) D.C.Y.C. Rodger: Tai: Microelectronic packaging for retinal prosthesis, IEEE Eng. Med. Biol. 24, 52–57 (2005)
7.150
go back to reference D. Ziegler, T. Suzuki, S. Takeuchi: Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene, J. Microelectromech. Syst. 15, 1477–1482 (2006) D. Ziegler, T. Suzuki, S. Takeuchi: Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene, J. Microelectromech. Syst. 15, 1477–1482 (2006)
7.151
go back to reference X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processing and applications, J. Micromech. Microeng. 13, 628–633 (2003) X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processing and applications, J. Micromech. Microeng. 13, 628–633 (2003)
7.152
go back to reference C.J. Lee, S.J. Oh, J.K. Song, S.J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004) C.J. Lee, S.J. Oh, J.K. Song, S.J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004)
7.153
go back to reference F.F. Faheem, K.C. Gupta, Y.C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microw. Theory Tech. 51, 2562–2567 (2003) F.F. Faheem, K.C. Gupta, Y.C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microw. Theory Tech. 51, 2562–2567 (2003)
7.154
go back to reference J.N. Palasagaram, R. Ramadoss: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques, IEEE Sens. J. 6, 1374–1375 (2006) J.N. Palasagaram, R. Ramadoss: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques, IEEE Sens. J. 6, 1374–1375 (2006)
Metadata
Title
Materials Aspects of Micro- and Nanoelectromechanical Systems
Author
Christian A. Zorman
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_7