Skip to main content
Top

2020 | OriginalPaper | Chapter

37. Materials Aspects of Thermal Barrier Coatings

Author : Ashutosh S. Gandhi

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal barrier coatings (TBCs) are being used for the past few decades for providing thermal insulation to metallic components of hot parts of gas turbine engines. The low thermal conductivity ceramic coatings contribute toward maintaining a large temperature difference between the hot gases in the gas turbine and the superalloy components. High engine efficiency as well as prolonged component lifetime can be achieved by integrating TBCs with gas turbine components at the design stage itself. While yttria-stabilized zirconia emerged as the work-horse TBC material, a few other advanced compositions are also being used by some of the engine manufacturers. Prominent among these are zirconia-based compositions with rare-earth oxide additions, either with tetragonal or pyrochlore structure. A lot of research activity has focused on durability issues relevant to the TBC technology, for enhancing reliability as well as performance. Phase transformations, oxidation-induced residual stress, changes in fracture toughness, and thermochemical attack by contaminants ingested by the engine are some of the important degradation mechanisms governing durability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815CrossRef Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815CrossRef
2.
go back to reference Naumenko D, Pillai R, Chyrkin A, Quadakkers WJ (2017) Overview on recent developments of bondcoats for plasma-sprayed thermal barrier coatings. J Therm Spray Technol 26:1743–1757CrossRef Naumenko D, Pillai R, Chyrkin A, Quadakkers WJ (2017) Overview on recent developments of bondcoats for plasma-sprayed thermal barrier coatings. J Therm Spray Technol 26:1743–1757CrossRef
3.
go back to reference Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809CrossRef Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809CrossRef
4.
go back to reference Pollock TM, Lipkin DM, Hemker KJ (2012) Multifunctional coating interlayers for thermal-barrier systems. MRS Bull 37:923–931CrossRef Pollock TM, Lipkin DM, Hemker KJ (2012) Multifunctional coating interlayers for thermal-barrier systems. MRS Bull 37:923–931CrossRef
5.
go back to reference Miller RA (1987) Current status of thermal barrier coatings – an overview. Surf Coat Technol 30:1–11CrossRef Miller RA (1987) Current status of thermal barrier coatings – an overview. Surf Coat Technol 30:1–11CrossRef
6.
go back to reference Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46:505–553CrossRef Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46:505–553CrossRef
8.
go back to reference Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284CrossRef Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284CrossRef
9.
go back to reference Wright PK (1998) Influence of cyclic strain on life of a PVD TBC. Mater Sci Eng A 245:191–200CrossRef Wright PK (1998) Influence of cyclic strain on life of a PVD TBC. Mater Sci Eng A 245:191–200CrossRef
10.
go back to reference Vaßen R, Kagawa Y, Subramanian R, Zombo P, Zhu D (2012) Testing and evaluation of thermal-barrier coatings. MRS Bull 37:911–916CrossRef Vaßen R, Kagawa Y, Subramanian R, Zombo P, Zhu D (2012) Testing and evaluation of thermal-barrier coatings. MRS Bull 37:911–916CrossRef
11.
go back to reference Ang ASM, Berndt CC (2014) A review of testing methods for thermal spray coatings. Int Mater Rev 59:179–223CrossRef Ang ASM, Berndt CC (2014) A review of testing methods for thermal spray coatings. Int Mater Rev 59:179–223CrossRef
12.
go back to reference Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417CrossRef Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417CrossRef
13.
go back to reference Darolia R (2013) Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev 58:315–348CrossRef Darolia R (2013) Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev 58:315–348CrossRef
14.
go back to reference Evans AG, Clarke DR, Levi CG (2008) The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc 28:1405–1419CrossRef Evans AG, Clarke DR, Levi CG (2008) The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc 28:1405–1419CrossRef
15.
go back to reference Levi CG, Hutchinson JW, Vidal-Sétif MH, Johnson CA (2012) Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 37:932–941CrossRef Levi CG, Hutchinson JW, Vidal-Sétif MH, Johnson CA (2012) Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 37:932–941CrossRef
16.
go back to reference Wellman RG, Nicholls JR (2000) Some observations on erosion mechanisms of EB PVD TBCS. Wear 242:89–96CrossRef Wellman RG, Nicholls JR (2000) Some observations on erosion mechanisms of EB PVD TBCS. Wear 242:89–96CrossRef
17.
go back to reference Chen X et al (2004) Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear 256:735–746CrossRef Chen X et al (2004) Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear 256:735–746CrossRef
18.
go back to reference Viswanathan V, Dwivedi G, Sampath S (2015) Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. J Am Ceram Soc 98:1769–1777CrossRef Viswanathan V, Dwivedi G, Sampath S (2015) Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. J Am Ceram Soc 98:1769–1777CrossRef
19.
go back to reference Luthra KL, Spacil HS (1982) Impurity deposits in gas turbines from fuels containing sodium and vanadium. J Electrochem Soc 129:649–656CrossRef Luthra KL, Spacil HS (1982) Impurity deposits in gas turbines from fuels containing sodium and vanadium. J Electrochem Soc 129:649–656CrossRef
20.
go back to reference Nagelberg AS (1985) Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc 132:2502–2507CrossRef Nagelberg AS (1985) Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc 132:2502–2507CrossRef
21.
go back to reference Reddy N, Gandhi AS (2013) Molten salt attack on t′ yttria-stabilised zirconia by dissolution and precipitation. J Eur Ceram Soc 33:1867–1874CrossRef Reddy N, Gandhi AS (2013) Molten salt attack on t′ yttria-stabilised zirconia by dissolution and precipitation. J Eur Ceram Soc 33:1867–1874CrossRef
22.
go back to reference Kilo M et al (2003) Cation self-diffusion of 44 Ca, 88 Y, and 96 Zr in single-crystalline calcia- and yttria-doped zirconia. J Appl Phys 94:7547–7552CrossRef Kilo M et al (2003) Cation self-diffusion of 44 Ca, 88 Y, and 96 Zr in single-crystalline calcia- and yttria-doped zirconia. J Appl Phys 94:7547–7552CrossRef
23.
go back to reference Levi CG (1998) Metastability and microstructure evolution in the synthesis of precursors. Acta Meter 46:787–800CrossRef Levi CG (1998) Metastability and microstructure evolution in the synthesis of precursors. Acta Meter 46:787–800CrossRef
24.
go back to reference Miller RA, Smialek JL Garlick RG (1981) Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In: Advances in ceramics, vol 3. Am Ceram Soc, Columbus, pp 241–253 Miller RA, Smialek JL Garlick RG (1981) Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In: Advances in ceramics, vol 3. Am Ceram Soc, Columbus, pp 241–253
25.
go back to reference Lughi V, Clarke DR (2005) Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc 88:2552–2558CrossRef Lughi V, Clarke DR (2005) Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc 88:2552–2558CrossRef
26.
go back to reference Lughi V, Clarke DR (2005) High temperature aging of YSZ coatings and subsequent transformation at low temperature. Surf Coat Technol 200:1287–1291CrossRef Lughi V, Clarke DR (2005) High temperature aging of YSZ coatings and subsequent transformation at low temperature. Surf Coat Technol 200:1287–1291CrossRef
27.
go back to reference Lipkin DM et al (2013) Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I – synchrotron X-ray diffraction. J Am Ceram Soc 96:290–298CrossRef Lipkin DM et al (2013) Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I – synchrotron X-ray diffraction. J Am Ceram Soc 96:290–298CrossRef
28.
go back to reference Loganathan A, Gandhi AS (2012) Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater Sci Eng A 556:927–935CrossRef Loganathan A, Gandhi AS (2012) Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater Sci Eng A 556:927–935CrossRef
29.
go back to reference Krogstad JA et al (2013) Phase evolution upon aging of air plasma sprayed t′-zirconia coatings: II-microstructure evolution. J Am Ceram Soc 96:299–307CrossRef Krogstad JA et al (2013) Phase evolution upon aging of air plasma sprayed t′-zirconia coatings: II-microstructure evolution. J Am Ceram Soc 96:299–307CrossRef
30.
go back to reference Krogstad JA et al (2015) In situ diffraction study of the high-temperature decomposition of t′-zirconia. J Am Ceram Soc 98:247–254CrossRef Krogstad JA et al (2015) In situ diffraction study of the high-temperature decomposition of t′-zirconia. J Am Ceram Soc 98:247–254CrossRef
31.
go back to reference Loganathan A, Gandhi AS (2012) Effect of high-temperature aging on the fracture toughness of ytterbia-stabilized t′ zirconia. Scr Mater 67:285–288CrossRef Loganathan A, Gandhi AS (2012) Effect of high-temperature aging on the fracture toughness of ytterbia-stabilized t′ zirconia. Scr Mater 67:285–288CrossRef
32.
go back to reference Loganathan A, Gandhi AS (2017) Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci 52:7199–7206CrossRef Loganathan A, Gandhi AS (2017) Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci 52:7199–7206CrossRef
33.
go back to reference Loganathan A, Gandhi AS (2011) Fracture toughness of t′ ZrO2 stabilised with MO1.5 (M =Y, Yb & Gd) for thermal barrier application. Trans Indian Inst Metals 64:71–74CrossRef Loganathan A, Gandhi AS (2011) Fracture toughness of t′ ZrO2 stabilised with MO1.5 (M =Y, Yb & Gd) for thermal barrier application. Trans Indian Inst Metals 64:71–74CrossRef
34.
go back to reference Ponnuchamy MB, Gandhi AS (2015) Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. J Eur Ceram Soc 35:1879–1887CrossRef Ponnuchamy MB, Gandhi AS (2015) Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. J Eur Ceram Soc 35:1879–1887CrossRef
35.
go back to reference Ren X, Pan W (2014) Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater 69:397–406CrossRef Ren X, Pan W (2014) Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater 69:397–406CrossRef
36.
go back to reference Dwivedi G, Viswanathan V, Sampath S, Shyam A, Lara-Curzio E (2014) Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J Am Ceram Soc 97:2736–2744CrossRef Dwivedi G, Viswanathan V, Sampath S, Shyam A, Lara-Curzio E (2014) Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J Am Ceram Soc 97:2736–2744CrossRef
37.
go back to reference Renteria AF, Saruhan B, Schulz U, Raetzer-scheibe H (2006) Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs. Surf Coat Technol 201:2611–2620CrossRef Renteria AF, Saruhan B, Schulz U, Raetzer-scheibe H (2006) Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs. Surf Coat Technol 201:2611–2620CrossRef
38.
go back to reference Zhu D, Miller RA (2000) Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J Therm Spray Technol 9:175–180CrossRef Zhu D, Miller RA (2000) Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J Therm Spray Technol 9:175–180CrossRef
39.
go back to reference Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T (2005) Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. J Eur Ceram Soc 25:393–400CrossRef Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T (2005) Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. J Eur Ceram Soc 25:393–400CrossRef
40.
go back to reference Matsumoto M, Yamaguchi N, Matsubara H (2004) Low thermal conductivity and high temperature stability of ZrO 2-Y2O3-La2O3 coatings produced by electron beam PVD. Scr Mater 50:867–871CrossRef Matsumoto M, Yamaguchi N, Matsubara H (2004) Low thermal conductivity and high temperature stability of ZrO 2-Y2O3-La2O3 coatings produced by electron beam PVD. Scr Mater 50:867–871CrossRef
41.
go back to reference Guo S, Kagawa Y (2006) Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram Int 32:263–270CrossRef Guo S, Kagawa Y (2006) Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram Int 32:263–270CrossRef
42.
go back to reference Rätzer-Scheibe HJ, Schulz U (2007) The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol 201:7880–7888CrossRef Rätzer-Scheibe HJ, Schulz U (2007) The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol 201:7880–7888CrossRef
43.
go back to reference Lughi V, Tolpygo VK, Clarke DR (2004) Microstructural aspects of the sintering of thermal barrier coatings. Mater Sci Eng A 368:212–221CrossRef Lughi V, Tolpygo VK, Clarke DR (2004) Microstructural aspects of the sintering of thermal barrier coatings. Mater Sci Eng A 368:212–221CrossRef
44.
go back to reference Leyens C, Schulz U, Pint BA, Wright IG (1999) Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surf Coat Technol 120–121:68–76CrossRef Leyens C, Schulz U, Pint BA, Wright IG (1999) Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surf Coat Technol 120–121:68–76CrossRef
46.
go back to reference Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37:891–898CrossRef Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37:891–898CrossRef
47.
go back to reference Lin CK, Berndt CC (1995) Statistical analysis of microhardness variations in thermal spray coatings. J Mater Sci 30:111–117CrossRef Lin CK, Berndt CC (1995) Statistical analysis of microhardness variations in thermal spray coatings. J Mater Sci 30:111–117CrossRef
48.
go back to reference Burns AJ, Subramanian R, Kempshall BW, Sohn YH (2004) Microstructure of as-coated thermal barrier coatings with varying lifetimes. Surf Coat Technol 177–178:89–96CrossRef Burns AJ, Subramanian R, Kempshall BW, Sohn YH (2004) Microstructure of as-coated thermal barrier coatings with varying lifetimes. Surf Coat Technol 177–178:89–96CrossRef
49.
go back to reference Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS (2002) Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol 152:383–391CrossRef Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS (2002) Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol 152:383–391CrossRef
50.
go back to reference Lu TJ, Levi CG, Wadley HNG, Evans AG (2001) Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J Am Ceram Soc 84:2937–2946CrossRef Lu TJ, Levi CG, Wadley HNG, Evans AG (2001) Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J Am Ceram Soc 84:2937–2946CrossRef
51.
go back to reference Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74CrossRef Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74CrossRef
52.
go back to reference Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8:77–91CrossRef Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8:77–91CrossRef
53.
go back to reference Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z (2012) Low thermal conductivity oxides. MRS Bull 37:917–922CrossRef Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z (2012) Low thermal conductivity oxides. MRS Bull 37:917–922CrossRef
55.
go back to reference Zhu D, Chen YL Miller RA (2003) Defect clustering and nano phase struture characterization of Multi-component rare earth oxide doped Zirconia-yttria thermal barrier coatings, 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A Editors Waltraud M. Kriven and Hau-Tay Lin. Amn Ceram Soc ISSN 0 196-62 19 Zhu D, Chen YL Miller RA (2003) Defect clustering and nano phase struture characterization of Multi-component rare earth oxide doped Zirconia-yttria thermal barrier coatings, 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A Editors Waltraud M. Kriven and Hau-Tay Lin. Amn Ceram Soc ISSN 0 196-62 19
56.
go back to reference Zhu D, Miller RA (2005) Development of advanced low conductivity thermal barrier coatings. Int J Appl Ceram Technol 1:86–94CrossRef Zhu D, Miller RA (2005) Development of advanced low conductivity thermal barrier coatings. Int J Appl Ceram Technol 1:86–94CrossRef
57.
go back to reference Vassen R, Cao X, Tietz F, Basu D, Sto D (2000) Zirconates as new materials for thermal barrier coating. J Am Ceram Soc 28:2023–2028 Vassen R, Cao X, Tietz F, Basu D, Sto D (2000) Zirconates as new materials for thermal barrier coating. J Am Ceram Soc 28:2023–2028
58.
go back to reference Bakan E, Vaßen R (2017) Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J Therm Spray Technol 26:992–1010CrossRef Bakan E, Vaßen R (2017) Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J Therm Spray Technol 26:992–1010CrossRef
59.
go back to reference Klemens PG (1997) Theory of thermal conductivity of nanophase materials. In: TMS annual meeting, pp 97–104 Klemens PG (1997) Theory of thermal conductivity of nanophase materials. In: TMS annual meeting, pp 97–104
60.
go back to reference Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr Mater 39:1119–1125CrossRef Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr Mater 39:1119–1125CrossRef
61.
go back to reference Gentleman MM, Clarke DR (2004) Concepts for luminescence sensing of thermal barrier coatings. Surf Coat Technol 188–189:93–100CrossRef Gentleman MM, Clarke DR (2004) Concepts for luminescence sensing of thermal barrier coatings. Surf Coat Technol 188–189:93–100CrossRef
62.
go back to reference Chambers MD, Clarke DR (2009) Doped oxides for high-temperature luminescence and lifetime thermometry. Annu Rev Mater Res 39:325–359CrossRef Chambers MD, Clarke DR (2009) Doped oxides for high-temperature luminescence and lifetime thermometry. Annu Rev Mater Res 39:325–359CrossRef
63.
go back to reference Wang X, Lee G, Atkinson A (2009) Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy. Acta Mater 57:182–195CrossRef Wang X, Lee G, Atkinson A (2009) Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy. Acta Mater 57:182–195CrossRef
64.
go back to reference Clarke DR, Christensen RJ, Tolpygo V (1997) The evolution of oxidation stresses in zirconia thermal barrier coated superalloy leading to spalling failure. Surf Coat Technol 94–95:89–93CrossRef Clarke DR, Christensen RJ, Tolpygo V (1997) The evolution of oxidation stresses in zirconia thermal barrier coated superalloy leading to spalling failure. Surf Coat Technol 94–95:89–93CrossRef
65.
go back to reference Stecura S (1985) Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system. NASA-TM-86905; NASA Lewis Research Center: Cleveland Stecura S (1985) Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system. NASA-TM-86905; NASA Lewis Research Center: Cleveland
67.
go back to reference Virkar AV (1998) Role of ferroelasticity in toughening of zirconia ceramics. Key Eng Mater 153-154:183–210 Virkar AV (1998) Role of ferroelasticity in toughening of zirconia ceramics. Key Eng Mater 153-154:183–210
68.
go back to reference Baither D et al (2001) Ferroelastic and plastic deformation of t′ -zirconia single crystals. J Am Ceram Soc 84:1755–1762 Baither D et al (2001) Ferroelastic and plastic deformation of t′ -zirconia single crystals. J Am Ceram Soc 84:1755–1762
69.
go back to reference Schaedler TA, Leckie RM, Kraemer S, Evans AG, Levi CG (2007) Toughening of nontransformable t’ -YSZ by addition of Titania. J Am Ceram Soc 3901:3896–3901 Schaedler TA, Leckie RM, Kraemer S, Evans AG, Levi CG (2007) Toughening of nontransformable t’ -YSZ by addition of Titania. J Am Ceram Soc 3901:3896–3901
70.
go back to reference Krogstad JA, Lepple M, Levi CG (2013) Opportunities for improved TBC durability in the CeO2-TiO2-ZrO2 system. Surf Coat Technol 221:44–52CrossRef Krogstad JA, Lepple M, Levi CG (2013) Opportunities for improved TBC durability in the CeO2-TiO2-ZrO2 system. Surf Coat Technol 221:44–52CrossRef
71.
go back to reference Bolon AM, Gentleman MM (2011) Raman spectroscopic observations of ferroelastic switching in ceria-stabilized zirconia. J Am Ceram Soc 94:4478–4482CrossRef Bolon AM, Gentleman MM (2011) Raman spectroscopic observations of ferroelastic switching in ceria-stabilized zirconia. J Am Ceram Soc 94:4478–4482CrossRef
72.
go back to reference Pitek FM, Levi CG (2007) Opportunities for TBCs in the ZrO 2 – YO 1. 5 – TaO 2. 5 system. Surf Coat Technol 201:6044–6050CrossRef Pitek FM, Levi CG (2007) Opportunities for TBCs in the ZrO 2 – YO 1. 5 – TaO 2. 5 system. Surf Coat Technol 201:6044–6050CrossRef
73.
go back to reference Shian S et al (2014) The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater 69:196–202CrossRef Shian S et al (2014) The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater 69:196–202CrossRef
Metadata
Title
Materials Aspects of Thermal Barrier Coatings
Author
Ashutosh S. Gandhi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_50

Premium Partners