Skip to main content
Top

2011 | OriginalPaper | Chapter

7. Materials Characterization

Author : Bradley D. Fahlman

Published in: Materials Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Once a material has been fabricated, how does one assess whether the synthetic technique has been successful? This chapter describes a plethora of sophisticated techniques that may be used to characterize the structure of various classes of materials. Precedents from the literature are used to provide examples of real-world characterization studies to illustrate the utility of the various techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
More information on the components and operation of reflection microscopes may be obtained from http://​www.​microscopyu.​com/​articles/​dic/​reflecteddic.​html
 
2
Synge, E. H. Philos. Mag. 1928, 6, 356.
 
3
For a thorough review of NSOM, see: Dunn, R. C. Chem. Rev. 1999, 99, 2891.
 
5
Note: it is important to note the general trend of decreasing wavelength (and greater resolution) as the velocity of electrons is increased (i.e., higher accelerating voltages).
 
6
Cremer, J. T.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Glinka, C. J. Appl. Phys. Lett. 2004, 85, 494.
 
8
O’Dwyer, C.; Navas, D.; Lavayen, V.; Benavente, E.; Santa Ana, M. A.; Gonzalez, G.; Newcomb, S. B.; Sotomayor Torres, C. M. Chem. Mater. 2006, 18, 3016.
 
9
Hu, J.; Bando, Y.; Zhan, J.; Zhi, C.; Golberg, D. Nano Lett. 2006, 6, 1136.
 
10
For an image of the lattice structure and properties of LaB6, see: http://​www.​kimphys.​com/​cathode/​catalog_​PDF/​LaB6_​cathode_​ES423.​pdf
 
11
Perkins, C. L.; Trenary, M.; Tanaka, T.; Otani, S. Surface Sci. 1999, 423, L222.
 
12
Nojeh, A.; Wong, W.-K.; Yieh, E.; Pease, R. F.; Dai, H. J. Vac. Sci. Technol. B 2004, 22, 3124.
 
13
(a) http://​anl.​gov/​techtransfer/​Available_​Technologies/​Chemistry/​uncd_​flc.​html (b) Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhimov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N. J. Appl. Phys. 2001, 89, 2958, and references therein.
 
14
Chanana, R. K.; McDonald, K.; Di Ventra, M.; Pantelides, S. T.; Feldman, L. C.; Chung, G. Y.; Tin, C. C.; Williams, J. R. Appl. Phys. Lett. 2000, 77, 2560.
 
15
For a more detailed description of resolution and magnification of field-emission electron microscopes, see:
(a) Rose, D. J. J. Appl. Phys. 1956, 27, 215.
(b) O’Keefe, M. A. Ultramicroscopy 1992, 47, 282.
 
17
The low-resolution SEM image was reproduced with permission from Li, F.; Zhang, L.; Metzger, R. M. Chem. Mater. 1998, 10, 2470. Copyright 1998 American Chemical Society.
 
18
The high-resolution SEM image was reproduced with permission from Moon, J. -M.; Wei, A. J. Phys. Chem. B 2005, 109, 23336. Copyright 2005 American Chemical Society.
 
19
Note: unless otherwise stated, TEM micrographs are collected as bright-field images.
 
20
Formvar is a copolymer of polyvinyl alcohol, formaldehyde, and polyvinyl acetate.
 
21
The very same material obtained by reacting normal cotton with nitric acid and sulfuric acid to yield “gun cotton” – a highly explosive solid that burns with an extremely bright flash leaving behind no residue. Since the thickness is extremely small for the support material and the degree of nitration/sulfation is supposedly less than gun powder compositions, there are no explosion hazards in handling grids. However, the native resin used to make support films is a flammable solid and should be treated with caution.
 
22
Butvar B98 is a polyvinyl butyral resin containing 20% polyvinyl alcohol. These support films are hydrophilic, hence, they are useful for negative staining methods.
 
24
The FIB/lift-out technique yields cross sections of both the film and substrate, which maintains the integrity of the interface; in comparison, ultramicrotomy requires the removal of the polymer film and subsequent embedding/sectioning. For a detailed example, see: White, H.; Pu, Y.; Rafailovich, M.; Sokolov, J.; King, A. H.; Giannuzzi, L. A.; Urbanik-Shannon, C.; Kempshall, B. W.; Eisenberg, A.; Schwarz, S. A.; Strzhemechny, Y. M. Polymer 2001, 42, 1613.
 
25
Virgilio, N.; Favis, B. D.; Pepin, M. -F.; Desjardins, P. Macromolecules 2005, 38, 2368.
 
26
Reproduced with permission from Fu, L.; Liu, Y.; Hu, P.; Xiao, K.; Yu, G.; Zhu, D. Chem. Mater. 2003, 15, 4287. Copyright 2003 American Chemical Society.
 
27
Reproduced with permission from Liu, Z.; Ohsuna, T.; Sato, K.; Mizuno, T.; Kyotani, T.; Nakane, T.; Terasaki, O. Chem. Mater. 2006, 18, 922. Copyright 2006 American Chemical Society.
 
28
Morniroli, J. -P. “Introduction to Electron Diffraction” in NATO Series II: Mathematics, Physics and Chemistry 2006, 211, 61.
 
29
(a) Steeds, J. W.; Morniroli, J. P. Rev. Mineralogy Geochem. 1992, 27, 37.
(b) Tsuda, K.; Mitsuishi, H.; Terauchi, M.; Kawamura, K. J. Electron Microsc. 2007, 56, 57.
(c) http://​www.​emal.​engin.​umich.​edu/​courses/​CBEDMSE562/​index.​html (very nice online course for CBED, from the Univ. of Michigan).
 
30
Reproduced with permission from Sun, G.; Sun, L.; Wen, H.; Jia, Z.; Huang, K.; Hu, C. J. Phys. Chem. B 2006, 110, 13375. Copyright 2006 American Chemical Society.
 
31
Reproduced with permission from Liu, Y.; Xu, H.; Qian, Y. Cryst. Growth Design 2006, 6, 1304. Copyright 2006 American Chemical Society.
 
32
An excellent book that contains many high-resolution TEM images and the electron diffraction patterns for a variety of archetypical unit cells see: Sindo, D.; Hiraga, K. High-Resolution Electron Microscopy for Materials Science, Springer: New York, 1998.
 
35
The nomenclature for X-ray emission consists of the name of the shell in which the vacancy was created (K, L, M, N), and on the electronic shell that filled the vacancy. For instance, ejection of a K shell electron, filled with a L shell electron is denoted as Kα; if filled with an M shell electron, then Kβ is used, and so on. Due to electronic subshells, nomenclature becomes significantly complex, as shown in Figure 7.17.
 
36
Note: it should be noted that EDS and WDS are often referred to as EDX and WDX, or XEDS and XWDS, respectively.
 
37
Note: the detection limits for EDS are typically 0.1 at% (for elements with Z > 10), whereas WDS is able to detect elements present in concentrations of a few ppm.
 
38
Fahlman, B. D., unpublished results.
 
39
Reproduced with permission from Harmer, M. A.; Farneth, W. E.; Sun, Q. J. Am. Chem. Soc. 1996, 118, 7708. Copyright 1996 American Chemical Society.
 
40
Reproduced with permission from Li, Y.; Xiang, J.; Qian, F.; Gradecak, S.; Wu, Y.; Yan, H.; Blom, D. A.; Lieber, C. M. Nano Lett. 2006, 6, 1468. Copyright 2006 American Chemical Society.
 
41
Note: electromagnetic lenses suffer from three types of defects: astigmatism, spherical aberrations, and chromic aberrations. Astigmatism may be easily minimized by placing electromagnets, known as stigmator coils, around the column. The current in these coils may be varied, which will reform the distorted electron beam back into a round shape. Chromic aberrations may be reduced by using a field emission source that produces an electron beam with a sharper distribution of electron energies. However, the third type of defect, spherical aberrations (C s), are not easily circumvented. In fact, this is the primary factor that limits the resolution of electron microscopes to values far below their theoretical values. Recently, techniques have been developed to correct for these defects, often involving the use of multipole lenses (e.g., quadrupole, octapole, etc.) with careful control of their fabrication and operation. For a discussion of methods used for aberration correction in electron microscopy, see:
(a) http://​ncem.​lbl.​gov/​team/​TEAM%20​Report%20​2000.​pdf; (b) Tanaka, N.; Yamasaki, J.; Hirahara, K.; Yoshida, K.; Saitoh, K. Microscopy and Microanalysis 2006, 12, 158.
 
42
Specifications and information for TEAM 0.5 (TEAM = Transmission Electron Aberration-corrected Microscope) – the first ultra-high resolution TEM, located at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, may be found online at:
Note: another group at Argonne National Laboratory is also working on aberration correction for electron microscopy: http://​www.​ipd.​anl.​gov/​anlpubs/​2002/​03/​42224.​pdf – the NTEAM project, for aberration-corrected standard and in situ TEM.
 
43
Some important precedents that show the utility of Z-contrast imaging: (a) Arslan, I.; Yates, T. J. V.; Browning, N. D.; Midgley, P. A. Science 2005, 309, 2195. (b) Chisholm, M. F.; Kumar, S.; Hazzledine, P. Science 2005, 307, 701. (c) Nellist, P. D.; Pennycook, S. J. Science 1996, 274, 413.
 
44
For a study that shows the influence of focus, sample thickness, and inner detector angle on the image, Klenov, D. O.; Stemmer, S. Ultramicroscopy 2006, 106, 889.
 
45
Note: the photon energies for the light elements are: Be (0.109 keV), B (0.185 keV), C (0.282 keV), N (0.392 keV), O (0.523 keV), and F (0.677 keV). Due to these low energies, the emitted X-rays are easily absorbed by the sample or the components of the detector.
 
46
Note: Bremsstrahlung is from the German word bremsen (“to brake”), and Strahlung (“radiation”) – thus, “braking radiation.” This is characterized by a broad peak that results from deceleration of beam electrons due to scattering from atomic nuclei.
 
47
Pronounced: OH-zhā.
 
48
Note: the energy-dispersing device at the heart of EDS is a semiconducting diode. As an incoming X-ray photon impinges the diode, electron–hole pairs are generated, which yields a measurable electrical current. In order to reduce background noise from photons not originating from the sample, the detector is operated at temperatures of ca. 140 K. A protective window comprising Be, or more recently, ultrathin windows of BN, diamond, or a supported polymer (paralene, norvar), is used to prevent the condensation of vapors (e.g., water, organics) onto the cooled diode. A “windowless” detector may also be used for EDS; with careful operation, this modification allows the detection of elements down as far as Be – with a maximum efficiency of only 2%. It should be noted that although UHV conditions are used in a TEM/SEM instrument, there will always be a low concentration of vapors – often originating from the rotary pump fluid, or the sample itself due to beam-induced volatilization/decomposition, residual solvent evaporation, etc. The buildup of such a coating on the detector window will reduce the energy of the incoming X-rays, which will drastically reduce the detection sensitivity – especially for low-Z elements.
 
49
It should be noted that reflection techniques are also possible through modifying the angle of approach of the incident electron beam of the TEM. Such analysis is referred to as reflection electron microscopy (REM), and accompanying characterizations such as reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS) are also possible, grouped under the umbrella of reflection high-resolution analytical electron microscopy (RHRAEM). (a) For an application of this multifaceted approach to study GaAs(110) surfaces, see: Wang, Z. L. J. Electron. Microsc. Tech. 1988, 10, 35 (citation found online at: http://​www.​osti.​gov/​energycitations/​product.​biblio.​jsp?​osti_​id=​6614173). (b) Additional information may be found in Wang, Z. L. Reflection Electron Microscopy and Spectroscopy for Surface Analysis, Cambridge University Press: Cambridge, UK, 1996. (A book synopsis is found online at: http://​www.​nanoscience.​gatech.​edu/​zlwang/​book/​book2_​intro.​pdf).
 
50
For a thorough summary/examples of the details generated from EELS spectra, see: Thomas, J. M.; Williams, B. G.; Sparrow, T. G. Acc. Chem. Res. 1985, 18, 324.
 
51
(a) Williams, B. G.; Sparrow, T. G.; Egerton, R. F. Proc. R. Soc. Lond. Ser. A 1984, 393, 409. (b) Sparrow, T. G.; Williams, B. G.; Thomas, J. M.; Jones, W.; Herley, P. J.; Jefferson, D. A. J. Chem. Soc., Chem. Commun. 1983, 1432. (c) Ferrell, R. A. Phys. Rev. 1956, 101, 554.
 
53
(top) Reproduced with permission from Gerald Kothleitner (http://​www.​felmi-zfe.​at), Electron Energy-Loss Spectroscopy (EELS) for the Hitachi HD-2000, found online at: www.​cs.​duke.​edu/​courses/​spring04/​cps296.​4/​papers/​EELS.​method.​pdf (bottom) Reproduced with permission from Brydson, R. Electron Energy Loss Spectroscopy, BIOS Scientific Publishers: Oxford, UK. Copyright 2001 Taylor & Francis Group.
 
54
A very nice tutorial on XANES and XAFS is found online at: http://​cars9.​uchicago.​edu/​xafs/​xas_​fun/​xas_​fundamentals.​pdf
 
55
For a recent application of EELS in determining the nature of C bonding in amorphous carbon nanotubes see: Hu, Z. D.; Hu, Y. F.; Chen, Q.; Duan, X. F.; Peng, L.-M. J. Phys. Chem. B. 2006, 110, 8263.
 
56
For a thorough summary/examples of the details generated from EELS spectra, see: Thomas, J. M.; Williams, B. G.; Sparrow, T. G. Acc. Chem. Res. 1985, 18, 324.
 
57
For information on the analysis of surfaces by IR radiation instead of electrons, a complimentary technique known as reflection absorption infrared spectroscopy (RAIRS), see: (a) http://​www.​uksaf.​org/​tech/​rairs.​html (b) http://​www.​cem.​msu.​edu/​~cem924sg/​Topic11.​pdf
 
58
For example, the development of fibers/fabrics that will actively adsorb and surface deactivate chemical and biological warfare agents – of increasing importance as new modes of terrorist activity continue to emerge. For more information, see: (a) http://​web.​mit.​edu/​isn/​(Institute of Soldier Nanotechnologies at M.I.T.). (b) Richards, V. N.; Vohs, J. K.; Williams, G. L.; Fahlman, B. D. J. Am. Ceram. Soc. 2005, 88, 1973.
 
59
Simon, C.; Walmsley, J.; Redford, K. Transmission Electron Microscopy Analysis of Hybrid Coatings, Proceedings of the 6th International Congress on Advanced Coating Technology, Nuremberg, Germany, April 3–4, 2001.
 
60
Note: Monte Carlo simulations performed by the author using the program CASINO (“monte CArlo SImulation of electroN trajectory in sOlids”), available free-of-charge on the Internet: http://​www.​gel.​usherbrooke.​ca/​casino/​What.​html
 
61
Note: some of the (potential) energy of the incident electrons is required to release an outer electron from its valence or conduction band, with the remaining being transferred into the kinetic energy of the ejected secondary electron.
 
62
For more details, refer to: Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis, 3 rd ed., Kluwer: New York, 2003.
 
64
Note: both carbon and gold coating are performed using a sputter-coating PVD method. The film of choice is most often C since it is less costly and is transparent to X-rays (for EDS). Gold is used to coat very uneven surfaces, and is only useful when EDS is not being performed (strong Au signal would mask other elements present in the sample).
 
65
The SEM image of charging was taken from unpublished work by the author. The gold-coated SEM image is also from the author’s research: Vohs, J. K.; Raymond, J. E.; Brege, J. J.; Williams, G. L.; LeCaptain, D. L.; Roseveld, S.; Fahlman, B. D. Polym. News 2005, 30(10), 330.
 
66
Richards, V. N.; Vohs, J. K.; Williams, G. L.; Fahlman, B. D. J. Am. Ceram. Soc. 2005, 88(7), 1973.
 
67
(a) Spectrum reproduced with permission from Zhu, Z.; Srivastava, A.; Osgood, R. M. J. Phys. Chem. B 2003, 107, 13939. Copyright 2003 American Chemical Society. (b) Auger depth profile reproduced with permission from Zhang, Y. W.; Yang, Y.; Jin, S.; Tian, S. J.; Li, G. B.; Jia, J. T.; Liao, C. S.; Yan, C. H. Chem. Mater. 2001, 13, 372. Copyright 2001 American Chemical Society.
 
68
An example of a tandem SEM/SAM instrument is the Thermo Microlab 350: http://​www.​thermo.​com/​
 
69
Note: the effect of charging can be controlled by either altering the position of the sample with regard to the incident electron beam, or using an argon ion (Ar+) gun to neutralize the charge.
 
70
A recent issue of the MRS Bulletin was devoted to in situ TEM: MRS Bull. 2008, 33.
 
71
For a historical background of ESEM development, see: http://​www.​danilatos.​com/​
 
72
For instance, see:
 
73
For more details, refer to: Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Kluwer: New York, 2003.
 
74
Schematic reproduced with permission from Miller, A. F.; Cooper, S. J. Langmuir 2002, 18, 1310. Copyright 2002 American Chemical Society.
 
75
Reproduced with permission from Rossi, M. P.; Ye, H.; Gogotsi, Y.; Babu, S.; Ndungu, P.; Bradley, J. -C. Nano Lett. 2004, 4, 989. Copyright 2004 American Chemical Society.
 
76
For example, see: Wang, Z. L.; Poncharal, P.; de Heer, W. A. J. Phys. Chem. Solids 2000, 61, 1025.
 
77
For instance, see: van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Nano Lett. 2008, 8, 3959.
 
78
For example, in situ growth of carbon nanotubes: Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Nano Lett. 2007, 7, 2234.
 
81
For instance, see: Wang, Z. L.; Poncharal, P.; de Heer, W. A. Pure Appl. Chem. 2000, 72, 209. May be accessed online at: http://​www.​iupac.​org/​publications/​pac/​2000/​pdf/​7201x0209.​pdf
 
83
Chiaramonti, A. N.; Schreiber, D. K.; Egelhoff, W. F.; Seidman, D. N.; Petford-Long, A. K. 2008, 93, 103113.
 
85
Zheng, H.; Smith, R. K.; Jun, Y. -W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Science 2009, 324, 1309.
 
86
Note: XPS is generally less damaging to beam-sensitive samples relative to SEM, EDS, and AES due to its use of “soft” X-rays, of much less energy (1–1.5 keV).
 
87
A very detailed example of XPS to distinguish among Li salts for Li-ion battery applications is: Dedryvere, R.; Leroy, S.; Martinez, H.; Blanchard, R.; Lemordant, D.; Gonbeau, D. J. Phys. Chem. B 2006, 110, 12986.
 
88
(a) As you may recall from Chapter 4, the energy bands of crystalline solids (e.g., semiconductors) are denoted as parabolas in an Ek diagram. Interactive Ek diagrams for SiGe and AlGaAs are found online (respectively) at:
(b) In addition to angle-resolve PES, photoluminescence spectroscopy is typically used as a nondestructive means to delineate the electronic properties of materials. For more information, see: (i) http://​www.​nrel.​gov/​measurements/​photo.​html (ii) Glinka, Y. D.; Lin, S.-H.; Hwang, L.-P.; Chen, Y.-T. J. Phys. Chem. B 2000, 104, 8652. (iii) Wu, J.; Han, W.-Q.; Walukiewicz, W.; Ager, J. W.; Shan, W.; Haller, E. E.; Zettl, A. Nano Lett. 2004, 4, 647.
 
89
Note: synchrotron radiation is generated by the acceleration of ultrarelavistic (i.e., moving near the speed of light) electrons through magnetic fields. This is accomplished by forcing the electrons to repeatedly travel in a closed loop by strong magnetic fields. The resulting radiation is orders of magnitude more intense than X-rays generated from X-ray tubes, and is widely tunable in energy (from <1 eV to MeVs). A popular source is the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, Upton, NY. A Si(111) crystal monochromator is typically used to vary the photon energy incident to the sample.
 
90
For an application example of EXAFS, see: Borgna, A.; Stagg, S. M.; Resasco, D. E. J. Phys. Chem. B 1998, 102, 5077. An example of XPS and XAFS (XANES and EXAFS), see: Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M. M.; Mangeney, C.; Villain, F.; Fievet, F. Langmuir 2005, 21, 6788.
 
91
For an application example of REFLEXAFS, see: d’Acapito, F.; Emelianov, I.; Relini, A.; Cavotorta, P.; Gliozzi, A.; Minicozzi, V.; Morante, S.; Solari, P. L.; Rolandi, R. Langmuir 2002, 18, 5277.
 
92
Gervasini, A.; Manzoli, M.; Martra, G.; Ponti, A.; Ravasio, N.; Sordelli, L.; Zaccheria, F. J. Phys. Chem. B 2006, 110, 7851.
 
93
Data analysis represents the most essential and time-consuming aspects of these techniques (as well as EELS). Typically, sample spectra are compared to reference samples that contain the probed element with similar valences and bonding motifs. In this example, Cu metal foil was used for the Cu―Cu interactions, and CuO/Cu2O were used for the Cu―O contributions. A variety of software programs are used for detailed curve-fitting, in order to obtain information regarding the chemical environment of the sample. For example, see: (a) http://​cars9.​uchicago.​edu/​~ravel/​software/​Welcome.​html (b) http://​www.​dragon.​lv/​eda/​ (c) http://​www.​aecom.​yu.​edu/​home/​csb/​exafs.​htm (d) http://​www.​xsi.​nl/​software.​html (e) http://​www.​xpsdata.​com/​
 
95
The presence of these satellites are indicative of Cu2+. For instance, see: (a) Espinos, J. P.; Morales, J.; Barranco A.; Caballero, A.; Holgado, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 6921. (b) Morales, J.; Caballero, A.; Holgado, J. P.; Espinos, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 10185. (c) Fuggle, J. C.; Alvarado, S. F. Phys. Rev. A 1980, 22, 1615 (describes the cause of peak broadening in XPS spectra, related to core-level lifetimes).
 
96
Many references exist for MIES studies of surfaces, most often carried out in tandem with UPS (to gain information for both the surface and immediate subsurface of the sample). For example, see: (a) Johnson, M. A.; Stefanovich, E. V.; Truong, T. N.; Gunster, J.; Goodman, D. W. J. Phys. Chem. B 1999, 103, 3391. (b) Kim, Y. D.; Wei, T.; Stulz, J.; Goodman, D. W. Langmuir 2003, 19, 1140 (very nice work that describes the shortfall of UPS alone, and the utility of a tandem UPS/MIES approach).
 
97
Note: though conventional RBS is carried out with He+ ions (which will backscatter from any atom with a greater Z), heavier ions such as C, O, Si, or Cl may be used in order to prevent background backscattering interactions with the matrix. For example, use of incident O ions to eliminate backscattering from lattice O atoms for the RBS analysis of ceramic oxides.
 
98
Simulations for ion scattering techniques such as RBS are typically compared with actual spectra in order to characterize the surface features. There are many such algorithms; for example: (a) Kido, Y.; Koshikawa, T. J. Appl. Phys. 1990, 67, 187. (b) Doolittle, L. R. Nucl. Instrum. Methods 1986, B15, 227 (RUMP program). (c) http://​www.​surrey.​ac.​uk/​ati/​ibc/​research/​ion_​beam_​analysis/​ (d) http://​www.​ee.​surrey.​ac.​uk/​SCRIBA/​ndf/​publist.​html (publications re RBS simulations). (e) http://​www-iba.​bo.​imm.​cnr.​it/​(a nice compilation of software for ion-beam analyses).
 
99
Many such systems exist; some examples include: (a) Western Michigan University (http://​tesla.​physics.​wmich.​edu/​AcceleratorFacil​ity.​php?​PG=​1). (b) Brookhaven National Laboratory (http://​tvdg10.​phy.​bnl.​gov/​index.​html). (c) National Institute of Standards and Technology (NIST, http://​physics.​nist.​gov/​Divisions/​Div846/​Gp2/​graaff.​html). (d) Yale University (http://​wnsl.​physics.​yale.​edu/​).
 
100
Note: also known as forward recoil scattering (FRS) or hydrogen forward scattering (HFS).
 
101
Naab, F. U.; Holland, O. W.; Duggan, J. L.; McDaniel, F. D. J. Phys. Chem. B 2005, 109, 1415, and references therein.
 
102
For a very thorough web presentation regarding SIMS see: (a) http://​www.​eaglabs.​com/​en-US/​presentations/​TOFSIMS/​Presentation_​Files/​index.​html (b) http://​www.​eaglabs.​com/​en-US/​research/​research.​html (other links to SIMS theory, applications, presentations).
 
103
For background information and recipes to study a variety of polymers using MALDI, see: http://​polymers.​msel.​nist.​gov/​maldirecipes/​maldi.​html
 
105
Note: typically, the majority of secondary ions are ejected from the top two or three monolayers (10–20 Å) of the sample.
 
106
For instance, the ion concentration of the impinging ion beam must be < 1% of the number of surface molecules. If this “static limit” is breached, a residue from molecular fragmentation will build up on the surface, which depletes the signal.
 
107
The use of fullerene ion sources represents an area of increasing interest. For example, see: Cheng, J.; Winograd, N. Anal. Chem. 2005, 77, 3651, and references therein.
 
108
Winograd, N. Anal. Chem. 2005, 77, 142A.
 
109
For example, see: (a) Delcorte, A.; Medard, N.; Bertrand, P. Anal. Chem. 2002, 74, 4955. (b) Delcorte, A.; Bour, J.; Aubriet, F.; Muller, J. -F.; Bertrand, P. Anal. Chem. 2003, 75, 6875.
 
110
Marcus, A.; Winograd, N. Anal. Chem. 2006, 78, 141.
 
111
Images reproduced with permission from Kim, Y. -P.; Oh, E.; Hong, M. -Y.; Lee, D.; Han, M. -K.; Shon, H. K.; Moon, D. W.; Kim, H. -S.; Lee, T. G. Anal. Chem. 2006, 78, 1913. Copyright 2006 American Chemical Society.
 
112
Images reproduced with permission from Verlinden, G.; Janssens, G.; Gijbels, R.; Van Espen, P. Anal. Chem. 1997, 69, 3772. Copyright 1997 American Chemical Society.
 
113
Seidman, D. N. Annu. Rev. Mater. Res. 2007, 37, 127, and references therein.
 
114
For example, see:
(a) Larson, D. J.; Petford-Long, A. K.; Ma, Y. Q.; Cerezo, A. Acta. Mater. 2004, 52, 2847.
(b) Gault, B.; Menand, A.; de Geuser, F.; Deconihout, B.; Danoix, F. Appl. Phys. Lett. 2006, 88, 114101.
 
115
A recent issue of MRS Bulletin is focused on APT: MRS Bull. 2009, 34 (Oct. 2009).
 
116
Seidman, D. N.; Stiller, K. MRS Bull. 2009, 34, 717.
 
117
Perea, D. E.; Hemesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Nature Nanotechnol. 2009, 4, 315.
 
118
For a recent review of atomic manipulation using AFM, see: Custance, O.; Perez, R.; Morita, S. Nature Nanotechnol. 2009, 4, 803.
 
119
Note: near-field scanning optical microscopy (NSOM) (discussed at the beginning of this chapter) is often grouped alongside other SPM techniques. However, for our discussion, we will focus on AFM and STM since these use physical probes to interrogate a surface, rather than focused light.
 
120
For example, see: Zhang, J.; Chi, Q.; Ulstrup, J. Langmuir 2006, 22, 6203.
 
121
For example, see: (a) France, C. B.; Frame, F. A.; Parkinson, B. A. Langmuir 2006, 22, 7507. (b) Li, W.-S.; Kim, K. S.; Jiang, D. -L.; Tanaka, H.; Kawai, T.; Kwon, J. H.; Kim, D.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10527. (c) Namai, Y.; Matsuoka, O. J. Phys. Chem. B 2006, 110, 6451.
 
122
For a recent precedent, see: Park, J. B.; Jaeckel, B.; Parkinson, B. A. Langmuir 2006, 22, 5334, and references therein. For a thorough recent review, see: Wan, L. -J. Acc. Chem. Res. 2006, 39, 334.
 
123
For example, see: Alam, M. S.; Dremov, V.; Muller, P.; Postnikov, A. V.; Mal, S. S.; Hussain, F.; Kortz, U. Inorg. Chem. 2006, 45, 2866.
 
124
Examples of some common forces that may exist between a surface and an AFM tip are Van der Waal, electrostatic, covalent bonding, capillary, and magnetic. In addition to providing information regarding the topography of the surface (constant force mode), forces may be applied to understand the morphology of a surface – for example, to determine the frictional force between the tip and surface, or the elasticity/hardness of a surface feature. For instance, see: Tranchida, D.; Piccarolo, S.; Soliman, M. Macromolecules 2006, 39, 4547, and references therein.
 
125
For a more sophisticated commercial liquid cell AFM system, see: http://​www.​veeco.​com/​escope
 
126
For example, see: O’Dwyer, C.; Gay, G.; Viaris de Lesegno, B.; Weiner, J. Langmuir 2004, 20, 8172, and references therein.
 
127
For example, see: (a) Cho, Y.; Ivanisevic, A. Langmuir 2006, 22, 1768. (b) Poggi, M. A.; Lillehei, P. T.; Bottomley, L. A. Chem. Mater. 2005, 17, 4289. (c) Gourianova, S.; Willenbacher, N.; Kutschera, M. Langmuir 2005, 21, 5429.
 
128
For example, see: (a) Takamura, Y.; Chopdekar, R. V.; Scholl, A.; Doran, A.; Liddle, J. A.; Harteneck, B.; Suzuji, Y. Nano Lett. 2006, 6, 1287. (b) Li, Y.; Tevaarwerk, E.; Chang, R. P. H. Chem. Mater. 2006, 18, 2552.
 
129
For example, see: Zhang, J.; Roberts, C. J.; Shakesheff, K. M.; Davies, M. C.; Tendler, S. J. B. Macromolecules 2003, 36, 1215, and references therein.
 
130
For a thorough description of SECM, see: Gardner, C. E.; Macpherson, J. V. Anal. Chem. 2002, 74, 576A.
 
132
(a) Nanoparticle-terminated tips: Reproduced with permission from Vakarelski, I. U.; Higashitani, K. Langmuir 2006, 22, 2931. Copyright 2006 American Chemical Society. (b) Nanotube-terminated tips: Reproduced with permission from Hafner, J. H.; Cheung, C. -L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 743. Copyright 2001 American Chemical Society. (c) Nanotube-terminated tips: Wilson, N. R.; Macpherson, J. V. Nano Lett. 2003, 3, 1365.
 
133
Note: an AFM probe responds to the average force between the sample surface and a group of tip atoms that are in close proximity to the surface. In order to image individual atoms by SPM, the surface–tip interactions must be limited to the nearest atom(s) on the tip periphery. Hence, an AFM image will not show individual atoms, but rather an average surface, with its ultimate resolution dependent on the sharpness of the tip structure. In contrast, STM is capable of atomic resolution since the tunneling current passes only through the tip atom that is nearest the sample surface.
 
134
Nanotube-terminated tips: Reproduced with permission from Hafner, J. H.; Cheung, C. -L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 743. Copyright 2001 American Chemical Society.
 
135
Nanoparticle-terminated tips: Reproduced with permission from Vakarelski, I. U.; Higashitani, K. Langmuir 2006, 22, 2931. Copyright 2006 American Chemical Society.
 
136
Named after Brunauer, Emmett, and Teller.
 
137
Tandem TGA/DSC instruments are commercially available, for example: http://​www.​tainst.​com/​
 
138
Note: an analogous (older) technique is known as differential thermal analysis (DTA), which yields the same information as DSC.
 
140
For a nice example that utilizes SAXS, WAXS, and SANS to determine the structural changes of polyethylene chains following annealing, see: Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. -F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S. J. Phys. Chem. B 2005, 109, 16650.
 
141
For an example of a quantitative SAXS study of a block copolymer-solvent system see: Soni, S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A. J. Phys. Chem. B 2006, 110, 15157. An example of the use of SAXS to determine the particle size distribution of nanoparticles, see: Rieker, T.; Hanprasopwattana, A.; Datye, A.; Hubbard, P. Langmuir 1999, 15, 638.
 
Literature
1.
go back to reference Flegler, S. L.; Heckman, J. W.; Klomparens, K. L. Scanning and Transmission Electron Microscopy: An Introduction, W. H. Freeman: New York, 1993. Flegler, S. L.; Heckman, J. W.; Klomparens, K. L. Scanning and Transmission Electron Microscopy: An Introduction, W. H. Freeman: New York, 1993.
2.
go back to reference Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer: New York, 2009. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer: New York, 2009.
3.
go back to reference Echlin, P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Springer: New York, 2009. Echlin, P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Springer: New York, 2009.
4.
go back to reference Sawyer, L. C.; Grubb, D. T.; Meyers, G. F. Polymer Microscopy: Characterization and Evaluation of Materials, Springer: New York, 2008. Sawyer, L. C.; Grubb, D. T.; Meyers, G. F. Polymer Microscopy: Characterization and Evaluation of Materials, Springer: New York, 2008.
5.
go back to reference Egerton, R. F. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer: New York, 1986. Egerton, R. F. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer: New York, 1986.
6.
go back to reference Zhou, W.; Wang, Z. L. Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer: New York, 2006. Zhou, W.; Wang, Z. L. Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer: New York, 2006.
7.
go back to reference Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Kluwer: New York, 2003. Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Kluwer: New York, 2003.
8.
go back to reference Encyclopedia of Materials Characterization – Surfaces, Interfaces, Thin Films, Brundle, C. R.; Evans, C. A.; Wilson, S. eds., Elsevier: New York, 1992. Encyclopedia of Materials Characterization – Surfaces, Interfaces, Thin Films, Brundle, C. R.; Evans, C. A.; Wilson, S. eds., Elsevier: New York, 1992.
9.
go back to reference Campbell, D.; Pethrick, P. A.; White, J. R. Polymer Characterization, 2nd ed., Stanley Thornes: Cheltenham, UK, 2000. Campbell, D.; Pethrick, P. A.; White, J. R. Polymer Characterization, 2nd ed., Stanley Thornes: Cheltenham, UK, 2000.
10.
go back to reference Criddle, W. J.; Ellis, G. P. Spectral and Chemical Characterization of Organic Compounds: A Laboratory Handbook, 3rd ed., Wiley: New York, 1990. Criddle, W. J.; Ellis, G. P. Spectral and Chemical Characterization of Organic Compounds: A Laboratory Handbook, 3rd ed., Wiley: New York, 1990.
11.
go back to reference Dinardo, N. J. Nanoscale Characterization of Surfaces and Interfaces, 2nd ed., Wiley: New York, 2004. Dinardo, N. J. Nanoscale Characterization of Surfaces and Interfaces, 2nd ed., Wiley: New York, 2004.
12.
go back to reference Surface Characterization: A User’s Sourcebook, Brune, D.; Hellborg, R.; Hunderi, O. eds., Wiley: New York, 1997. Surface Characterization: A User’s Sourcebook, Brune, D.; Hellborg, R.; Hunderi, O. eds., Wiley: New York, 1997.
13.
go back to reference Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Methods of Surface Characterization), Czanderna, A. W.; Madey, T. E.; Powell, C. J. eds., Plenum Press: New York, 1998. Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Methods of Surface Characterization), Czanderna, A. W.; Madey, T. E.; Powell, C. J. eds., Plenum Press: New York, 1998.
14.
go back to reference Ion Spectroscopies for Surface Analysis (Methods of Surface Characterization), Czanderna, A. W.; Hercules, D. M. eds., Springer: New York, 1991. Ion Spectroscopies for Surface Analysis (Methods of Surface Characterization), Czanderna, A. W.; Hercules, D. M. eds., Springer: New York, 1991.
15.
go back to reference Brandon, D. D.; Kaplan, W. D. Microstructural Characterization of Materials, Wiley: New York, 1999. Brandon, D. D.; Kaplan, W. D. Microstructural Characterization of Materials, Wiley: New York, 1999.
16.
go back to reference Pecharsky, V.; Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer: New York, 2005. Pecharsky, V.; Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer: New York, 2005.
17.
go back to reference Concise Encyclopedia of Materials Characterization, 2nd ed., Cahn, R. ed., Elsevier: San Diego, CA, 2005. Concise Encyclopedia of Materials Characterization, 2nd ed., Cahn, R. ed., Elsevier: San Diego, CA, 2005.
18.
go back to reference Characterization of Polymers (Materials Characterization), Tong, H.-M.; Kowalczyk, S. P.; Saraf, R.; Chou, N. J. eds., Butterworth-Heinemann: New York, 1993. Characterization of Polymers (Materials Characterization), Tong, H.-M.; Kowalczyk, S. P.; Saraf, R.; Chou, N. J. eds., Butterworth-Heinemann: New York, 1993.
Metadata
Title
Materials Characterization
Author
Bradley D. Fahlman
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0693-4_7

Premium Partners