Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2022

25-01-2022

Mathematical Algorithm for Estimating the Acoustic Conductivity of the Wavefront for Verification of a Diagnostic Model in an Analysis of Defects in a Polymer Composite Material

Authors: S. V. Bochkarev, A. F. Salnikov, A. L. Galinovsky

Published in: Mechanics of Composite Materials | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The modal analysis is considered as one of the lines of technical diagnostics for evaluating the quality of polymer composite materials (PCMs). It allows one to link the structure of modal characteristics of PCM element base in the amplitude-frequency domain. In the course of modal analysis, the complex construction of PCM as a heterogeneous material is transformed into a set of easy-to-understand independent systems with one degree of freedom. This structural approach is used to analyze the structure of PCM components. A laser is used to form an external action, with the help of which PCM components can form a wave field when vibrations pass through its thickness. Vibrations and deformations of PCM structural elements under a mechanical excitation are considered as the intrinsic vibration forms (vibration modes) of PCM elements — the filler and matrices. High-frequency laser actions extracts a constant wavefront, which is used for constructing an algorithm for recognition of the structure of PCM, including the detection of possible defects, such as changes in its density and various stratifications. To assess the technical condition of structural elements of PCM, a mathematical model was developed to assess the effect of defects on passage of a wave and the excitation of modal vibrations by the element base of PCM. The mathematical algorithm for estimating the acoustic conductivity of the wavefront, together with experimental data, was used for constructing a wave diagnostics algorithm. It made it possible to create an algorithm for a technical diagnostics of PCM elements. An experiment was conducted on the laser action on a carbon fiber panel with specially created defects. The frequency values found in various zones of carbon fiber showed a qualitative and quantitative change in the structure of PCM. It is shown that, to construct an effective model for diagnosing the technical condition of PCM elements, more experimental studies are required.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference US patent No. 7,829,855 Methods and apparatus for determining fiber orientation / Reid Matthew E., Fedosejevs Robert. - 2010.11.09. US patent No. 7,829,855 Methods and apparatus for determining fiber orientation / Reid Matthew E., Fedosejevs Robert. - 2010.11.09.
2.
go back to reference RF patent №2 666 159 The device of complex automated non-destructive quality control of multilayer products / Shishkin S. R., Arkhipenkov O. A., Ulanov A. S., Budadin O. N., Rykov A. N. - 2018.- No. 25. 1-20. RF patent №2 666 159 The device of complex automated non-destructive quality control of multilayer products / Shishkin S. R., Arkhipenkov O. A., Ulanov A. S., Budadin O. N., Rykov A. N. - 2018.- No. 25. 1-20.
3.
go back to reference A. O. Kuznetsov, O. N. Budadin., E. G. Monakhova, and A. V. Guskov, “Thermal method for assessing the stability of manufacturing technologies for products from composite materials during their mass production,” Kontrol. Diagnostik., No. 11, 20-24 (2017). A. O. Kuznetsov, O. N. Budadin., E. G. Monakhova, and A. V. Guskov, “Thermal method for assessing the stability of manufacturing technologies for products from composite materials during their mass production,” Kontrol. Diagnostik., No. 11, 20-24 (2017).
4.
go back to reference L. N. Stepanova, V. V. Chernova, and S. I. Kabanov, “Analysis of the mode composition of acoustic emission signals with simultaneous thermal and static loading of T800 CFRP specimens,” Kontrol. Diagnostik., No. 11, 4-13 (2018).CrossRef L. N. Stepanova, V. V. Chernova, and S. I. Kabanov, “Analysis of the mode composition of acoustic emission signals with simultaneous thermal and static loading of T800 CFRP specimens,” Kontrol. Diagnostik., No. 11, 4-13 (2018).CrossRef
5.
go back to reference N. P. Zayets, O. N. Karpenko, I. A. Chizhov, and V. S. Oleshko, “Method of thermal control of aircraft structures from polymer composite materials,” Konstr. Kompoz. Mater., No. 1, 62-68 (2018). N. P. Zayets, O. N. Karpenko, I. A. Chizhov, and V. S. Oleshko, “Method of thermal control of aircraft structures from polymer composite materials,” Konstr. Kompoz. Mater., No. 1, 62-68 (2018).
6.
go back to reference RF patent №2 473 894 Ultrasonic method of density control during operation of parts made of highly filled composite materials based on HMX / Kostyukov E. N., Vakhmistrov S. A., Mikhailov A. L., Kolmakov O. V. – 2013, No. 3. 1-5. RF patent №2 473 894 Ultrasonic method of density control during operation of parts made of highly filled composite materials based on HMX / Kostyukov E. N., Vakhmistrov S. A., Mikhailov A. L., Kolmakov O. V. – 2013, No. 3. 1-5.
7.
go back to reference US Patent No. 8,236,914 Self-assessing mechanochromic materials / Stephanie L. Potisek, Douglas A. Davis, Scott R. White, Nancy R. Sottos, Jeffrey S. Moore. - 2012.08.07. US Patent No. 8,236,914 Self-assessing mechanochromic materials / Stephanie L. Potisek, Douglas A. Davis, Scott R. White, Nancy R. Sottos, Jeffrey S. Moore. - 2012.08.07.
8.
go back to reference RF patent №2443975 Method of visualization and control of dynamic surface deformations and shock loads / A. F. Banishev, A. A. Banishev — 2012. - No. 6.1-7. RF patent №2443975 Method of visualization and control of dynamic surface deformations and shock loads / A. F. Banishev, A. A. Banishev — 2012. - No. 6.1-7.
9.
go back to reference K. Imielińska, M. Castaings, R. Wojtyra, J. Haras, E. Le Clezio, and B. Hosten, “Air-coupled ultrasonic C-scan technique in impact response testing of carbon fiber and hybrid: Glass, non-destructive testing of low-velocity impacted composite material laminates. 21 carbon and Kevlar / epoxy composites,” J. Mater. Proc. Technol., Nos. 157-158, 513-522 (2004). K. Imielińska, M. Castaings, R. Wojtyra, J. Haras, E. Le Clezio, and B. Hosten, “Air-coupled ultrasonic C-scan technique in impact response testing of carbon fiber and hybrid: Glass, non-destructive testing of low-velocity impacted composite material laminates. 21 carbon and Kevlar / epoxy composites,” J. Mater. Proc. Technol., Nos. 157-158, 513-522 (2004).
10.
go back to reference J. Chiachío, N. Bochud, M. Chiachío, S. Cantero, and G. Rus, “A multilevel Bayesian method for ultrasound-based damage identification in composite laminates,” Mech. Systems Signal Proc., No. 88, 462-477 (2017).CrossRef J. Chiachío, N. Bochud, M. Chiachío, S. Cantero, and G. Rus, “A multilevel Bayesian method for ultrasound-based damage identification in composite laminates,” Mech. Systems Signal Proc., No. 88, 462-477 (2017).CrossRef
11.
go back to reference A. N. Rykov and B. V. Artemyev, “Experience of practical determination of the error of the total area of defects in automated ultrasonic testing of products made of polymer composite materials. Kontrol. Diagnostik., No. 1, 18-24 (2018).CrossRef A. N. Rykov and B. V. Artemyev, “Experience of practical determination of the error of the total area of defects in automated ultrasonic testing of products made of polymer composite materials. Kontrol. Diagnostik., No. 1, 18-24 (2018).CrossRef
12.
go back to reference A. S. Boychuk, V. Yu. Chertishchev, I. A. Dikov, A. S. Generalov, and A. V. Slavin, “Influence of pore morphology on ultrasonic control of porosity in CFRP by the echo-pulse method,” Kontrol. Diagnostik., No. 8, 22-29 (2018).CrossRef A. S. Boychuk, V. Yu. Chertishchev, I. A. Dikov, A. S. Generalov, and A. V. Slavin, “Influence of pore morphology on ultrasonic control of porosity in CFRP by the echo-pulse method,” Kontrol. Diagnostik., No. 8, 22-29 (2018).CrossRef
13.
go back to reference V. A. Bataev, L. N. Stepanova, N. A. Laperdina, and V. V. Chernova, “Acoustic emission control of the early stage of development of defects under static loading of samples from carbon fiber,” Kontrol. Diagnostik., No. 8, 14-20 (2018).CrossRef V. A. Bataev, L. N. Stepanova, N. A. Laperdina, and V. V. Chernova, “Acoustic emission control of the early stage of development of defects under static loading of samples from carbon fiber,” Kontrol. Diagnostik., No. 8, 14-20 (2018).CrossRef
14.
go back to reference Yu. G. Sokolovskaya and A. A. Karabutov, “Laser-ultrasonic flaw detection of structures made of multiaxial polymer composite materials,” Konstr. Kompoz. Mater., No. 1, 56-61 (2018). Yu. G. Sokolovskaya and A. A. Karabutov, “Laser-ultrasonic flaw detection of structures made of multiaxial polymer composite materials,” Konstr. Kompoz. Mater., No. 1, 56-61 (2018).
15.
go back to reference Yu. G. Sokolovskaya, A. N. Zharinov, and A. A. Karabutov, “Application of the laser-ultrasonic method to control the inhomogeneities of the distribution of the polymer matrix in carbon fiber structures,” Kontrol. Diagnostik., No. 9, 48-53 (2018).CrossRef Yu. G. Sokolovskaya, A. N. Zharinov, and A. A. Karabutov, “Application of the laser-ultrasonic method to control the inhomogeneities of the distribution of the polymer matrix in carbon fiber structures,” Kontrol. Diagnostik., No. 9, 48-53 (2018).CrossRef
16.
go back to reference L. N. Stepanova and V. V. Chernova, “Analysis of the structural coefficients of acoustic emission signals under static loading of CFRP specimens with impact damage,” Kontrol. Diagnostik., No. 6, 34-41 (2017).CrossRef L. N. Stepanova and V. V. Chernova, “Analysis of the structural coefficients of acoustic emission signals under static loading of CFRP specimens with impact damage,” Kontrol. Diagnostik., No. 6, 34-41 (2017).CrossRef
17.
go back to reference V. E. Barsuk, G. G. Anokhin, and L. N. Stepanova, “Strength testing of elements of aircraft structures made of carbon fiber using the method of acoustic emission and tensometry,” Polet, No. 7, 53-60 (2016). V. E. Barsuk, G. G. Anokhin, and L. N. Stepanova, “Strength testing of elements of aircraft structures made of carbon fiber using the method of acoustic emission and tensometry,” Polet, No. 7, 53-60 (2016).
18.
go back to reference O. V. Bashkov, A. E. Protsenko, A. A. Bryanskiy, and R. V. Romashko, “Diagnostics of polymer composite materials and analysis of their manufacturing technologies using the acoustic emission method. materials,” Mekh. Kompoz. Mater., 53, No. 4, 765-774 (2017). O. V. Bashkov, A. E. Protsenko, A. A. Bryanskiy, and R. V. Romashko, “Diagnostics of polymer composite materials and analysis of their manufacturing technologies using the acoustic emission method. materials,” Mekh. Kompoz. Mater., 53, No. 4, 765-774 (2017).
19.
go back to reference M. R. Kumar, A. Gosh, and D. Karuppannan, “Numerical and experimental determination of the characteristics of the secondary glued composite overlap joint by the ultrasonic method. materials,” Mekh. Kompoz. Mater. 54, No. 2, 379-390 (2018). M. R. Kumar, A. Gosh, and D. Karuppannan, “Numerical and experimental determination of the characteristics of the secondary glued composite overlap joint by the ultrasonic method. materials,” Mekh. Kompoz. Mater. 54, No. 2, 379-390 (2018).
20.
go back to reference I. A. Dikov, A. S. Boychuk, M. A. Dalin, V. Yu. Chertishchev, and A. S. Generalov, “Relation between the strength characteristics, porosity, and data of ultrasound control for PCM specimens obtained by autoclave and infusion technologies,” Kontrol. Diagnostik., No. 11, 40-51 (2018).CrossRef I. A. Dikov, A. S. Boychuk, M. A. Dalin, V. Yu. Chertishchev, and A. S. Generalov, “Relation between the strength characteristics, porosity, and data of ultrasound control for PCM specimens obtained by autoclave and infusion technologies,” Kontrol. Diagnostik., No. 11, 40-51 (2018).CrossRef
21.
go back to reference A. Kovalev, S. Ruchevskis, V. Kulakov, and M. Vesolovskiy, “Optimal arrangement of electrodes for determining delamination in a composite material by the method of percentage change in electrical resistance,” Mekh. Kompoz. Mater. 55, No. 6, 1173-1184 (2019). A. Kovalev, S. Ruchevskis, V. Kulakov, and M. Vesolovskiy, “Optimal arrangement of electrodes for determining delamination in a composite material by the method of percentage change in electrical resistance,” Mekh. Kompoz. Mater. 55, No. 6, 1173-1184 (2019).
22.
go back to reference M. Yu. Fedotov, O. N. Budadin, S. A. Vasiliev, O. I. Medvedkov, and S. O. Kozelskaya, “Possibilities of controlling external mechanical actions by a fiber-optical diagnostic system built in carbon plastics of various types,” Kontrol. Diagnostik., No. 3, 38-47 (2019).CrossRef M. Yu. Fedotov, O. N. Budadin, S. A. Vasiliev, O. I. Medvedkov, and S. O. Kozelskaya, “Possibilities of controlling external mechanical actions by a fiber-optical diagnostic system built in carbon plastics of various types,” Kontrol. Diagnostik., No. 3, 38-47 (2019).CrossRef
23.
go back to reference RF patent No. 2633288 Method of diagnostics of reliability and limiting service life of multilayer structures made of composite materials / Budadin O. N., Kulkov A. A., Kozelskaya S. O., Kaledin V. O. - 2017. - No. 29. 1-27. RF patent No. 2633288 Method of diagnostics of reliability and limiting service life of multilayer structures made of composite materials / Budadin O. N., Kulkov A. A., Kozelskaya S. O., Kaledin V. O. - 2017. - No. 29. 1-27.
24.
go back to reference RF patent 2641638 Composite construction with built-in measuring system / Hunt J. H. (US), Belk J. H. (US).- 2018, - No. 2, 1-4. RF patent 2641638 Composite construction with built-in measuring system / Hunt J. H. (US), Belk J. H. (US).- 2018, - No. 2, 1-4.
25.
go back to reference V. A. Aniskovich, O. N. Budadin, N. L. Zaikina, V. Yu. Kutyurin, T. A. Mukhanova, A. F. Razin, A. V. Solovey, and V. A. Vodopyanov, “Measurement deformations using fiber-optic sensors in the process of strength testing of anisogrid structures made of composite materials,” Kontrol. Diagnostik., No. 7, 44-49 (2018).CrossRef V. A. Aniskovich, O. N. Budadin, N. L. Zaikina, V. Yu. Kutyurin, T. A. Mukhanova, A. F. Razin, A. V. Solovey, and V. A. Vodopyanov, “Measurement deformations using fiber-optic sensors in the process of strength testing of anisogrid structures made of composite materials,” Kontrol. Diagnostik., No. 7, 44-49 (2018).CrossRef
26.
go back to reference M. Yu. Fedotov, O. N. Budadin, S. A. Vasiliev, O. I. Medvedkov, and S. O. Kozelskaya, “Investigation of an integrated fiber-optic system for diagnostics of CFRP after exposure to thermal and heat-moisture aging,” Kontrol. Diagnostik., No. 11, 26-31 (2018).CrossRef M. Yu. Fedotov, O. N. Budadin, S. A. Vasiliev, O. I. Medvedkov, and S. O. Kozelskaya, “Investigation of an integrated fiber-optic system for diagnostics of CFRP after exposure to thermal and heat-moisture aging,” Kontrol. Diagnostik., No. 11, 26-31 (2018).CrossRef
27.
go back to reference US patent No. 20070118313 Systems and methods for detecting discontinuous fibers in composite laminates / Vaccaro Christopher M. - 2007. - May 24, 1-11. US patent No. 20070118313 Systems and methods for detecting discontinuous fibers in composite laminates / Vaccaro Christopher M. - 2007. - May 24, 1-11.
28.
go back to reference A. A. Barzov, A. L. Galinovsky, E. S. Golubev, N. N. Sysoev, A. A. Fedyanin, and A. S. Filimonov, “Ultrajet express diagnostic of anisotropy of the surface layer of materials and parts of rocket and space technique,” Inzh. Zhurnal: Nauka, Innov., No. 6 (78), 1-14 (2018). A. A. Barzov, A. L. Galinovsky, E. S. Golubev, N. N. Sysoev, A. A. Fedyanin, and A. S. Filimonov, “Ultrajet express diagnostic of anisotropy of the surface layer of materials and parts of rocket and space technique,” Inzh. Zhurnal: Nauka, Innov., No. 6 (78), 1-14 (2018).
29.
go back to reference A. A. Barzov, S. V. Bochkarev, and A. L. Galinovski, “Functionally deterministic model of hydroerosion in studying the physically latent ability of a composite material to defect formation,” Mekh. Kompoz. Mater., 56, No. 4, 497-504 (2020). A. A. Barzov, S. V. Bochkarev, and A. L. Galinovski, “Functionally deterministic model of hydroerosion in studying the physically latent ability of a composite material to defect formation,” Mekh. Kompoz. Mater., 56, No. 4, 497-504 (2020).
30.
go back to reference A. F. Salnikov, “Diagnostics of the technical condition of large-sized parts of gas turbine engines by modal characteristics,” Vestn. Perm Natsional. Issl. Politekh. Univer. Aerokosm. Tekhn. No. 55, 61-69 (2018). A. F. Salnikov, “Diagnostics of the technical condition of large-sized parts of gas turbine engines by modal characteristics,” Vestn. Perm Natsional. Issl. Politekh. Univer. Aerokosm. Tekhn. No. 55, 61-69 (2018).
31.
go back to reference A. A. Karabutov, N. B. Podymova, and Yu. G. Sokolovskaya, “Local Kramers–Kronig relations for the attenuation coefficient and phase velocity of longitudinal ultrasonic waves in polymer composites,” Akust. Zhurn., Fiz. Akustik., 65, No. 2, 182-189 (2019). A. A. Karabutov, N. B. Podymova, and Yu. G. Sokolovskaya, “Local Kramers–Kronig relations for the attenuation coefficient and phase velocity of longitudinal ultrasonic waves in polymer composites,” Akust. Zhurn., Fiz. Akustik., 65, No. 2, 182-189 (2019).
32.
go back to reference A. S. Shamaev and V. V. Shumilova, “Passage of a plane sound wave through a layered composite with components made of elastic and viscoelastic materials,” Akust. Zhurn., Fiz. Akustik., 61, No. 1, 10-20 (2015). A. S. Shamaev and V. V. Shumilova, “Passage of a plane sound wave through a layered composite with components made of elastic and viscoelastic materials,” Akust. Zhurn., Fiz. Akustik., 61, No. 1, 10-20 (2015).
33.
go back to reference Yu. G. Sokolovskaya, N. B. Podymova, and A. A. Karabutov, “Laser optical-acoustic method for quantitative assessment of the porosity of CFRPs based on the measurement of their acoustic impedance,” Akust. Zhurn., Fiz. Akustik., 66, No. 1, 86-94 (2020). Yu. G. Sokolovskaya, N. B. Podymova, and A. A. Karabutov, “Laser optical-acoustic method for quantitative assessment of the porosity of CFRPs based on the measurement of their acoustic impedance,” Akust. Zhurn., Fiz. Akustik., 66, No. 1, 86-94 (2020).
34.
go back to reference A. L. Galinovsky, S. V. Bochkarev, and V. A. Nelyub, Technologies for the Production and Diagnostics of Composite Structures of Aircraft: A Tutorial [in Russian], A. L. Galinovsky, S. V. Bochkarev, V. A. Nelyub.- Stary Oskol: TNT (2019). A. L. Galinovsky, S. V. Bochkarev, and V. A. Nelyub, Technologies for the Production and Diagnostics of Composite Structures of Aircraft: A Tutorial [in Russian], A. L. Galinovsky, S. V. Bochkarev, V. A. Nelyub.- Stary Oskol: TNT (2019).
35.
go back to reference M. A. Prokhorova, Zonlein Juliana, and Zhenyuan Jia, “Creation of a defective composite panel for testing diagnostic methods,” Politekh. Molodezh. Zhurn., No. 06 (47) (2020). M. A. Prokhorova, Zonlein Juliana, and Zhenyuan Jia, “Creation of a defective composite panel for testing diagnostic methods,” Politekh. Molodezh. Zhurn., No. 06 (47) (2020).
Metadata
Title
Mathematical Algorithm for Estimating the Acoustic Conductivity of the Wavefront for Verification of a Diagnostic Model in an Analysis of Defects in a Polymer Composite Material
Authors
S. V. Bochkarev
A. F. Salnikov
A. L. Galinovsky
Publication date
25-01-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-09997-y

Other articles of this Issue 6/2022

Mechanics of Composite Materials 6/2022 Go to the issue

Premium Partners