Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Mathematical Bases for 2D Insect Trap Counts Modelling

Authors : Danish A. Ahmed, Joseph D. Bailey, Sergei V. Petrovskii, Michael B. Bonsall

Published in: Advances in Artificial Intelligence, Computation, and Data Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pitfall trapping is a predominant sampling method in insect ecology, invasive species and agricultural pest management. Once samples are collected, their content is analyzed, different species are identified and counted and then used to provide reliable estimates of relative population abundance. Such estimates are essential for a variety of reasons, such as the general survey of insect diversity, detection of new insect invasions or simply for monitoring population levels. However, interpreting trap counts is a challenging task, since captures can depend on a variety of factors, such as environmental conditions, trap or survey design, insect movement behaviour, etc. Mathematical models provide an extremely useful description of how insects move in the field and in turn, can simulate the trapping process. In this chapter, we present the mathematical bases for 2D insect trap counts modelling, at the mean-field level using the diffusion equation and on an individual level using random walks. We reveal the intricacies of the trap counts dynamics, with details on how trap geometries and movement types can affect captures. We also describe the mathematical details for other trapping methods, such as baited trapping, where an attractant is used to lure the insects towards the trap location.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This is to avoid any resulting global biases in the movement path (Biased RW [27], see later Sect. 6.4.4) or the case of heavy tails (Lévy walks or flights [31, 32]).
 
Literature
1.
go back to reference Work TT, Buddle CM, Korinus LM, Spence JR (2002) Pitfall trap size and capture of three taxa of litterdwelling arthropods: implications for biodiversity studies. Environ Entomol 31:438–448 Work TT, Buddle CM, Korinus LM, Spence JR (2002) Pitfall trap size and capture of three taxa of litterdwelling arthropods: implications for biodiversity studies. Environ Entomol 31:438–448
2.
go back to reference Pimentel D (2009) Integrated pest management: innovation-development process, vol 1. Springer, Berlin, pp 83–88 Pimentel D (2009) Integrated pest management: innovation-development process, vol 1. Springer, Berlin, pp 83–88
3.
go back to reference Hohbein RR, Conway CJ (2018) Pitfall traps: a review of methods for estimating arthropod abundance. Wildl Soc Bull 42(4):597–606 Hohbein RR, Conway CJ (2018) Pitfall traps: a review of methods for estimating arthropod abundance. Wildl Soc Bull 42(4):597–606
4.
go back to reference Den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53 Den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53
5.
go back to reference Niemelä J, Halme E, Haila Y (1990) Balancing sampling effort in pitfall trapping of carabid beetles. Entomol Fenn 1:233–238 Niemelä J, Halme E, Haila Y (1990) Balancing sampling effort in pitfall trapping of carabid beetles. Entomol Fenn 1:233–238
6.
go back to reference Dye C (1983) Insect movement and fluctuations in insect population size. Antenna 7:174–178 Dye C (1983) Insect movement and fluctuations in insect population size. Antenna 7:174–178
7.
go back to reference Raworth DA, Choi WJ (2001) Determining numbers of active carabid beetles per unit area from pitfall-trap data. Ent. Exp Appl 98:95–108 Raworth DA, Choi WJ (2001) Determining numbers of active carabid beetles per unit area from pitfall-trap data. Ent. Exp Appl 98:95–108
8.
go back to reference Luff ML (1975) Some features influencing the efficiency of pitfall traps. Oecologia 19(4):345–357PubMed Luff ML (1975) Some features influencing the efficiency of pitfall traps. Oecologia 19(4):345–357PubMed
9.
go back to reference Pekár S (2002) Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia 46(6):539–547 Pekár S (2002) Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia 46(6):539–547
10.
go back to reference Koivula MJ, Kotze DJ, Hiisivuori LKH, Rita HJ (2003) Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomol Fenn 14:1–14 Koivula MJ, Kotze DJ, Hiisivuori LKH, Rita HJ (2003) Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomol Fenn 14:1–14
11.
go back to reference Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol 6(12):3953–64PubMedPubMedCentral Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol 6(12):3953–64PubMedPubMedCentral
12.
go back to reference Cheli GH, Corley JC (2010) Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotrop Entomol 39(6):912–917PubMed Cheli GH, Corley JC (2010) Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotrop Entomol 39(6):912–917PubMed
13.
go back to reference Petrovskii S, Bearup D, Ahmed DA, Blackshaw R (2012) Estimating insect population density from trap counts. Ecol Complex 10:69–82 Petrovskii S, Bearup D, Ahmed DA, Blackshaw R (2012) Estimating insect population density from trap counts. Ecol Complex 10:69–82
14.
go back to reference Petrovskii S, Petrovskya N, Bearup D (2014) Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization and networks. Phys Life Rev 11(3):467–525PubMed Petrovskii S, Petrovskya N, Bearup D (2014) Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization and networks. Phys Life Rev 11(3):467–525PubMed
15.
go back to reference Greenslade PJM (1964) Pitfall trapping as a method for studying populations of carabidae (Coleoptera). J Anim Ecol 33(2):301–310 Greenslade PJM (1964) Pitfall trapping as a method for studying populations of carabidae (Coleoptera). J Anim Ecol 33(2):301–310
17.
go back to reference Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin
18.
go back to reference Turchin P (1998) Quantitative analysis of movement. Measuring and modelling population redistribution in animals and plants. Sinauer Associates, Inc. Sunderland, Massachusetts Turchin P (1998) Quantitative analysis of movement. Measuring and modelling population redistribution in animals and plants. Sinauer Associates, Inc. Sunderland, Massachusetts
19.
go back to reference Bearup D, Benefer CM, Petrovskii S, Blackshaw RP (2016) Revisiting Brownian motion as a description of animal movement: a comparison to experimental movement data. Methods Ecol Evol 7(12):1525–37 Bearup D, Benefer CM, Petrovskii S, Blackshaw RP (2016) Revisiting Brownian motion as a description of animal movement: a comparison to experimental movement data. Methods Ecol Evol 7(12):1525–37
20.
go back to reference Ahmed DA, Petrovskii S (2019) Analysing the impact of trap shape and movement behaviour of ground-dwelling arthropods on trap efficiency. Methods Ecol Evol 10(8):1246–64 Ahmed DA, Petrovskii S (2019) Analysing the impact of trap shape and movement behaviour of ground-dwelling arthropods on trap efficiency. Methods Ecol Evol 10(8):1246–64
21.
go back to reference Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 1st edn. Clarendon Press, Oxford Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 1st edn. Clarendon Press, Oxford
22.
go back to reference Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford
23.
go back to reference Berg HC (1983) Random walks in biology. Princeton University Press, Princeton Berg HC (1983) Random walks in biology. Princeton University Press, Princeton
24.
go back to reference Benhamou S (2006) Detecting an orientation component in animal paths when the preferred direction is individual-dependent. Ecology 87(2):518–528PubMed Benhamou S (2006) Detecting an orientation component in animal paths when the preferred direction is individual-dependent. Ecology 87(2):518–528PubMed
25.
go back to reference Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229(2):209–220PubMed Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229(2):209–220PubMed
26.
go back to reference Lin CC, Segel LA (1974) Mathematics applied to deterministic problems in the natural sciences. Macmillan, New York, NY Lin CC, Segel LA (1974) Mathematics applied to deterministic problems in the natural sciences. Macmillan, New York, NY
28.
go back to reference Petrovskii S, Morozov A, Li BL (2008) On a possible origin of the fat-tailed dispersal in population dynamics. Ecol Complex 5:146–150 Petrovskii S, Morozov A, Li BL (2008) On a possible origin of the fat-tailed dispersal in population dynamics. Ecol Complex 5:146–150
29.
go back to reference Holmes EE (1993) Are diffusion models too simple? a comparison with telegraph models of invasion. Am Nat 142(5):779–795PubMed Holmes EE (1993) Are diffusion models too simple? a comparison with telegraph models of invasion. Am Nat 142(5):779–795PubMed
30.
go back to reference Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11(13) Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11(13)
32.
go back to reference Ahmed DA, Petrovskii S, Tilles PFC (2018) The Lévy or diffusion controversy: how important is the movement pattern in the context of trapping? Mathematics 6(77) Ahmed DA, Petrovskii S, Tilles PFC (2018) The Lévy or diffusion controversy: how important is the movement pattern in the context of trapping? Mathematics 6(77)
33.
go back to reference Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton
34.
go back to reference Bearup D, Petrovskii S (2015) On time scale invariance of random walks in confined space. J Theor Biol 367:230–245PubMed Bearup D, Petrovskii S (2015) On time scale invariance of random walks in confined space. J Theor Biol 367:230–245PubMed
35.
go back to reference Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, Berlin, Germany Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, Berlin, Germany
36.
go back to reference Sornette D (2004) Critical phenomena in natural sciences, 2nd edn. Springer, Berlin Sornette D (2004) Critical phenomena in natural sciences, 2nd edn. Springer, Berlin
37.
go back to reference Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263–198 Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263–198
38.
go back to reference Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity jump processes. SIAM J Appl Math 61:751–775 Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity jump processes. SIAM J Appl Math 61:751–775
39.
go back to reference Blackshaw RP, Vernon RS, Thiebaud F (2018) Large scale Agriotes spp. click beetle (Coleoptera: Elateridae) invasion of crop land from field margin reservoirs. Agric For Entomol 20(1):51–61 Blackshaw RP, Vernon RS, Thiebaud F (2018) Large scale Agriotes spp. click beetle (Coleoptera: Elateridae) invasion of crop land from field margin reservoirs. Agric For Entomol 20(1):51–61
40.
go back to reference Miller JR, Adams CG, Weston PA, Schenker JH (2015) Trapping of small organisms moving randomly. Principles and applications to pest monitoring and management. Springer briefs in ecology. Springer, United States Miller JR, Adams CG, Weston PA, Schenker JH (2015) Trapping of small organisms moving randomly. Principles and applications to pest monitoring and management. Springer briefs in ecology. Springer, United States
41.
go back to reference Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338 Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338
42.
go back to reference Hall RL (1977) Amoeboid movements as a correlated walk. J Math Biol 4:327–335PubMed Hall RL (1977) Amoeboid movements as a correlated walk. J Math Biol 4:327–335PubMed
43.
go back to reference Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56(2–3):234–238PubMed Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56(2–3):234–238PubMed
44.
go back to reference Bovet P, Benhamou S (1988) Spatial analysis of animals’ movements using a correlated random walk model. J Theor Biol 131(4):419–433 Bovet P, Benhamou S (1988) Spatial analysis of animals’ movements using a correlated random walk model. J Theor Biol 131(4):419–433
45.
go back to reference Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–45 Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–45
46.
go back to reference Mardia KV, Jupp PE (2000) Directional statistics. Wiley, Chichester Mardia KV, Jupp PE (2000) Directional statistics. Wiley, Chichester
47.
go back to reference Codling EA, Bearon RN, Thorn GJ (2010) Diffusion about the mean drift location in a biased random walk. Ecology 91(10):3106–13 Codling EA, Bearon RN, Thorn GJ (2010) Diffusion about the mean drift location in a biased random walk. Ecology 91(10):3106–13
49.
go back to reference Almeida PJAL, Vieira MV, Kajin M, Forero-Medina G, Rui. Cerqueira. (2010) Indices of movement behaviour: conceptual background, effects of scale and location errors. Zoologia (Curitiba) 27(5):674–680 Almeida PJAL, Vieira MV, Kajin M, Forero-Medina G, Rui. Cerqueira. (2010) Indices of movement behaviour: conceptual background, effects of scale and location errors. Zoologia (Curitiba) 27(5):674–680
50.
go back to reference Hill NA, Hader DP (1997) A biased random walk model for the trajectories of swimming micro-organisms. J Theor Biol 186:503–526PubMed Hill NA, Hader DP (1997) A biased random walk model for the trajectories of swimming micro-organisms. J Theor Biol 186:503–526PubMed
51.
go back to reference Schultz CB, Crone EE (2001) Edge-mediated dispersal behaviour in a prairie butterfly. Ecology 82:1879–1892 Schultz CB, Crone EE (2001) Edge-mediated dispersal behaviour in a prairie butterfly. Ecology 82:1879–1892
52.
go back to reference Benhamou S (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–239PubMed Benhamou S (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–239PubMed
53.
go back to reference Bailey J (2019) Modelling and analysis of individual animal movement. PhD thesis, University of Essex Bailey J (2019) Modelling and analysis of individual animal movement. PhD thesis, University of Essex
54.
go back to reference Codling EA (2003) Biased random walks in biology. PhD thesis, University of Leeds Codling EA (2003) Biased random walks in biology. PhD thesis, University of Leeds
55.
go back to reference Nicosia A, Duchesne T, Rivest LP, Fortin D (2017) A general hidden state random walk model for animal movement. Comput Stat Data Anal 105:76–95 Nicosia A, Duchesne T, Rivest LP, Fortin D (2017) A general hidden state random walk model for animal movement. Comput Stat Data Anal 105:76–95
56.
go back to reference Bailey J, Wallis J, Codling EA (2018) Navigational efficiency in a biased and correlated random walk model of individual animal movement. Ecology 99(1):217–223PubMed Bailey J, Wallis J, Codling EA (2018) Navigational efficiency in a biased and correlated random walk model of individual animal movement. Ecology 99(1):217–223PubMed
57.
go back to reference Benhamou S, Bovet P (1992) Distinguishing between elementary orientation mechanisms by means of path analysis. Anim Behav 43:371–377 Benhamou S, Bovet P (1992) Distinguishing between elementary orientation mechanisms by means of path analysis. Anim Behav 43:371–377
58.
go back to reference Fortin D, Morales JM, Boyce MS (2005) Elk winter foraging at fine scale in yellowstone national park. Oecologia 145:335–343 Fortin D, Morales JM, Boyce MS (2005) Elk winter foraging at fine scale in yellowstone national park. Oecologia 145:335–343
59.
go back to reference Jacobson M, Beroza M (1963) Chemical insect attractants 140(3574):1367–73 Jacobson M, Beroza M (1963) Chemical insect attractants 140(3574):1367–73
60.
go back to reference Mccullough DG, Siegert NW, Poland TM, Pierce SJ, Ahn SZ (2011) Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site. Environ Entomol 40(5):1239–52 Mccullough DG, Siegert NW, Poland TM, Pierce SJ, Ahn SZ (2011) Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site. Environ Entomol 40(5):1239–52
61.
go back to reference Rassati D, Faccoli M, Toffolo EP, Battisti A, Marini L (2015) Improving the early detection of alien woodboring beetles in ports and surrounding forests. J Appl Ecol 52(1):50–58 Rassati D, Faccoli M, Toffolo EP, Battisti A, Marini L (2015) Improving the early detection of alien woodboring beetles in ports and surrounding forests. J Appl Ecol 52(1):50–58
62.
go back to reference Epsky ND, Morrill WL, Mankin R (2004) Traps for capturing insects. Springer, Dordrecht. In: Encyclopedia of entomology Epsky ND, Morrill WL, Mankin R (2004) Traps for capturing insects. Springer, Dordrecht. In: Encyclopedia of entomology
63.
go back to reference Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger 202:177–184 Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger 202:177–184
64.
go back to reference Woodcock BA (2005) Insect sampling in forest ecosystems. Blackwell Science ltd Woodcock BA (2005) Insect sampling in forest ecosystems. Blackwell Science ltd
65.
go back to reference Bearup D, Petrovskaya N, Petrovskii S (2015) Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration. Math Biosci 263:143–160PubMed Bearup D, Petrovskaya N, Petrovskii S (2015) Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration. Math Biosci 263:143–160PubMed
66.
go back to reference Hanski I (1999) Metapopulation ecology. Oxford series in ecology and evolution Hanski I (1999) Metapopulation ecology. Oxford series in ecology and evolution
67.
go back to reference Turchin P (1991) Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72(4):1253–66 Turchin P (1991) Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72(4):1253–66
68.
go back to reference Moorcroft PR, Lewis MA, Crabtree RL (2006) Mechanistic home range models capture spatial patterns and dynamics of coyote territories in yellowstone. Proc Biol Sci 273(1594):1651–59 Moorcroft PR, Lewis MA, Crabtree RL (2006) Mechanistic home range models capture spatial patterns and dynamics of coyote territories in yellowstone. Proc Biol Sci 273(1594):1651–59
Metadata
Title
Mathematical Bases for 2D Insect Trap Counts Modelling
Authors
Danish A. Ahmed
Joseph D. Bailey
Sergei V. Petrovskii
Michael B. Bonsall
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_6

Premium Partner