Skip to main content
Top

2018 | OriginalPaper | Chapter

17. Mathematical Models for Malware Propagation in Wireless Sensor Networks: An Analysis

Authors : A. Martín del Rey, A. Peinado

Published in: Computer and Network Security Essentials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) are a fundamental part of many emerging ICT scenarios, and, consequently, there are several security threats to which they are exposed. In recent years, malware propagation has gained special attention due to the resource improvements of sensor nodes of WSNs. The main goal of this work is to perform an analysis of the mathematical models proposed in the scientific literature by focusing the attention on network models. From this study, some suggestions in order to design efficient mathematical models for malware propagation in WSNs are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barabási, A. L. (2002). Linked. Cambridge, MA: Plume. Barabási, A. L. (2002). Linked. Cambridge, MA: Plume.
2.
go back to reference Bluetooth SIG. (2010). Bluetooth specification version 4. Kirkland, WA, USA: The Bluetooth Special Interest Group. Bluetooth SIG. (2010). Bluetooth specification version 4. Kirkland, WA, USA: The Bluetooth Special Interest Group.
3.
go back to reference Brauer, F. (2009). Mathematical epidemiology is not an oxymoron. BMC Public Health, 9, S2.CrossRef Brauer, F. (2009). Mathematical epidemiology is not an oxymoron. BMC Public Health, 9, S2.CrossRef
4.
go back to reference Chen, G., Wang, X., & Li, X. (2014). Fundamentals of complex networks. Models, structures and dynamics. Chichester, UK: Wiley. Chen, G., Wang, X., & Li, X. (2014). Fundamentals of complex networks. Models, structures and dynamics. Chichester, UK: Wiley.
5.
go back to reference De, P., & Das, S. K. (2009). Epidemic models, algorithms, and protocols in wireless sensor and Ad Hoc networks. In A. Boukerche (Ed.), Algorithms and protocols for wireless sensor networks (pp. 51–75). Hoboken, NJ: Wiley. De, P., & Das, S. K. (2009). Epidemic models, algorithms, and protocols in wireless sensor and Ad Hoc networks. In A. Boukerche (Ed.), Algorithms and protocols for wireless sensor networks (pp. 51–75). Hoboken, NJ: Wiley.
6.
go back to reference Dietz, K., & Heesterbeek, A. P. (2000). Bernoulli was ahead of modern epidemiology. Nature, 408, 513–514.CrossRef Dietz, K., & Heesterbeek, A. P. (2000). Bernoulli was ahead of modern epidemiology. Nature, 408, 513–514.CrossRef
7.
go back to reference Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor networks. Mathematical Problems in Engineering, 2015, Article ID 129598. Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor networks. Mathematical Problems in Engineering, 2015, Article ID 129598.
8.
go back to reference Fu, X., Small, M., & Chen, G. (2015). Propagation dynamics on complex networks. Models, methods and stability analysis. Singapore: Wiley.MATH Fu, X., Small, M., & Chen, G. (2015). Propagation dynamics on complex networks. Models, methods and stability analysis. Singapore: Wiley.MATH
9.
go back to reference de Fuentes, J. M., González-Manzano, L., & Mirzaei, O. (2016). Privacy models in wireless sensor networks: A survey. Journal of Sensors, 2016, Article ID 4082084. de Fuentes, J. M., González-Manzano, L., & Mirzaei, O. (2016). Privacy models in wireless sensor networks: A survey. Journal of Sensors, 2016, Article ID 4082084.
10.
go back to reference Grassly, N. C., & Fraser, C. (2008). Mathematical models of infectious disease transmission. Nature Reviews-Microbiology, 6, 477–487. Grassly, N. C., & Fraser, C. (2008). Mathematical models of infectious disease transmission. Nature Reviews-Microbiology, 6, 477–487.
11.
go back to reference Gross J. L., & Yellen, J. (Eds.). (2004). Handbook of graph theory. Boca Raton, FL: CRC Press. Gross J. L., & Yellen, J. (Eds.). (2004). Handbook of graph theory. Boca Raton, FL: CRC Press.
12.
go back to reference Hammer, W. H. (1906). Epidemic disease in England. Lancet, I, 733–754. Hammer, W. H. (1906). Epidemic disease in England. Lancet, I, 733–754.
14.
go back to reference IEEE Computer Society. (2012). IEEE 802.15.4e-2012, IEEE Standard for local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Computer Society. (2012). IEEE 802.15.4e-2012, IEEE Standard for local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer.
15.
go back to reference IEEE Computer Society. (2012). IEEE Std 802.11TM-2012, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Computer Society. (2012). IEEE Std 802.11TM-2012, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
16.
go back to reference International Electrotechnical Commission: White Paper. Internet of Things: Wireless Sensor Network (2014). International Electrotechnical Commission: White Paper. Internet of Things: Wireless Sensor Network (2014).
17.
go back to reference Karyotis, V., & Khouzani, M. H. R. (2016). Malware diffusion models for modern complex networks. Theory and applications. Cambridge, CA: Morgan Kaufmann. Karyotis, V., & Khouzani, M. H. R. (2016). Malware diffusion models for modern complex networks. Theory and applications. Cambridge, CA: Morgan Kaufmann.
18.
go back to reference Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92, 33–42.CrossRef Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92, 33–42.CrossRef
19.
go back to reference Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, 115, 700–721. Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, 115, 700–721.
20.
go back to reference Khayam, S. S., & Rahha, H. (2006). Using signal processing techniques to model worm propagation over wireless sensor networks. IEEE Signal Processing Magazine, 23, 164–169.CrossRef Khayam, S. S., & Rahha, H. (2006). Using signal processing techniques to model worm propagation over wireless sensor networks. IEEE Signal Processing Magazine, 23, 164–169.CrossRef
21.
go back to reference Li, Q., Zhang, B., Cui, L., Fan, Z., & Athanasios, V. V. (2014). Epidemics on small worlds of tree-based wireless sensor networks. Journal of Systems Science and Complexity, 27, 1095–1120.MathSciNetCrossRefMATH Li, Q., Zhang, B., Cui, L., Fan, Z., & Athanasios, V. V. (2014). Epidemics on small worlds of tree-based wireless sensor networks. Journal of Systems Science and Complexity, 27, 1095–1120.MathSciNetCrossRefMATH
22.
go back to reference López, J., & Zhou, J. (2008). Wireless sensor network security. Amsterdam: IOS Press. López, J., & Zhou, J. (2008). Wireless sensor network security. Amsterdam: IOS Press.
23.
go back to reference Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). A SCIRS model for malware propagation in wireless networks. In E. Corchado, et al. (Eds.), Advances intelligence systems and computation (Vol. 527, pp. 538–547). Berlin: Springer. Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). A SCIRS model for malware propagation in wireless networks. In E. Corchado, et al. (Eds.), Advances intelligence systems and computation (Vol. 527, pp. 538–547). Berlin: Springer.
24.
go back to reference Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). Modeling malware propagation in wireless sensor networks with individual-based models. In E. Corchado, et al. (Eds.), Advances in artificial intelligence. Lecture Notes in Artificial Intelligence (Vol. 9868, pp. 194–203). Berlin: Springer. Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). Modeling malware propagation in wireless sensor networks with individual-based models. In E. Corchado, et al. (Eds.), Advances in artificial intelligence. Lecture Notes in Artificial Intelligence (Vol. 9868, pp. 194–203). Berlin: Springer.
25.
go back to reference Martín del Rey, A., Hernández Encinas, A., Hernández Guillén, J. D., Martín Vaquero, J., Queiruga Dios, A., & Rodríguez Sánchez, G. (2016). An individual-based model for malware propagation in wireless sensor networks. In S. Omatu (Ed.), Advances in intelligence systems and computation (Vol. 474, pp. 223–230). Berlin: Springer. Martín del Rey, A., Hernández Encinas, A., Hernández Guillén, J. D., Martín Vaquero, J., Queiruga Dios, A., & Rodríguez Sánchez, G. (2016). An individual-based model for malware propagation in wireless sensor networks. In S. Omatu (Ed.), Advances in intelligence systems and computation (Vol. 474, pp. 223–230). Berlin: Springer.
26.
go back to reference Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37, 4103–4111.MathSciNetCrossRefMATH Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37, 4103–4111.MathSciNetCrossRefMATH
27.
go back to reference Obaidat, M. S., & Misra, S. (2014). Principles of wireless sensor networks. Cambridge: Cambridge University Press. Obaidat, M. S., & Misra, S. (2014). Principles of wireless sensor networks. Cambridge: Cambridge University Press.
28.
go back to reference Peng, S., Yu, S., & Yang, A. (2014). Smartphone malware and its propagation modeling: A survey. IEEE Communications Surveys & Tutorials, 16, 925–941.CrossRef Peng, S., Yu, S., & Yang, A. (2014). Smartphone malware and its propagation modeling: A survey. IEEE Communications Surveys & Tutorials, 16, 925–941.CrossRef
29.
go back to reference Ping, S. X., & Rong, S. J. Y. (2011). A malware propagation model in wireless sensor networks with cluster structure of GAF. Telecommunication Systems Journal, 27, 33–38. Ping, S. X., & Rong, S. J. Y. (2011). A malware propagation model in wireless sensor networks with cluster structure of GAF. Telecommunication Systems Journal, 27, 33–38.
30.
go back to reference Queiruga-Dios, A., Hernández Encinas, A., Martín-Vaquero, J., & Hernández Encinas, L. (2016). Malware propagation in wireless sensor networks: A review. In E. Corchado, et al. (Eds.), Advances in intelligence systems and computing (Vol. 527, pp. 648–657). Berlin: Springer. Queiruga-Dios, A., Hernández Encinas, A., Martín-Vaquero, J., & Hernández Encinas, L. (2016). Malware propagation in wireless sensor networks: A review. In E. Corchado, et al. (Eds.), Advances in intelligence systems and computing (Vol. 527, pp. 648–657). Berlin: Springer.
31.
go back to reference Ross, R. (1911). The prevention of malaria (2nd ed.). London: Murray. Ross, R. (1911). The prevention of malaria (2nd ed.). London: Murray.
32.
go back to reference Vasilakos, V. J. (2012). Dynamics in small world of tree topologies of wireless sensor networks. Journal of Systems Engineering and Electronics, 23, 325–334.CrossRef Vasilakos, V. J. (2012). Dynamics in small world of tree topologies of wireless sensor networks. Journal of Systems Engineering and Electronics, 23, 325–334.CrossRef
33.
go back to reference Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Differential Equations, 2014, 1–18.CrossRef Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Differential Equations, 2014, 1–18.CrossRef
34.
go back to reference Zhu, L., & Zhao, H. (2015). Dynamical analysis and optimal control for a malware propagation model in an information network. Neurocomputing, 149, 1370–1386.CrossRef Zhu, L., & Zhao, H. (2015). Dynamical analysis and optimal control for a malware propagation model in an information network. Neurocomputing, 149, 1370–1386.CrossRef
Metadata
Title
Mathematical Models for Malware Propagation in Wireless Sensor Networks: An Analysis
Authors
A. Martín del Rey
A. Peinado
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-58424-9_17