Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Mathematical Transformation Models of Nonlinear Interval Optimization

Authors : Chao Jiang, Xu Han, Huichao Xie

Published in: Nonlinear Interval Optimization for Uncertain Problems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter proposes two types of mathematical transformation models for general nonlinear interval optimization problems, i.e., the transformation model based on order relation of interval number and the transformation model based on possibility degree of interval number. Therefore, the uncertain optimization problem is transformed into a deterministic optimization. Furthermore, a two-layer optimization algorithm is established to solve the transformed deterministic optimization problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tanaka H, Okuda T, Asai K (1973) On Fuzzy-mathematical programming. J Cybern 3(4):37–46 Tanaka H, Okuda T, Asai K (1973) On Fuzzy-mathematical programming. J Cybern 3(4):37–46
2.
go back to reference Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48(2):219–225CrossRef Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48(2):219–225CrossRef
3.
go back to reference Lai KK, Wang SY, Xu JP, Zhu SS, Fang Y (2002) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10(6):698–704CrossRef Lai KK, Wang SY, Xu JP, Zhu SS, Fang Y (2002) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10(6):698–704CrossRef
4.
go back to reference Inuiguchi M, Sakawa M (1995) Minimax regret solution to linear programming problems with an interval objective function. Eur J Oper Res 86(3):526–536CrossRef Inuiguchi M, Sakawa M (1995) Minimax regret solution to linear programming problems with an interval objective function. Eur J Oper Res 86(3):526–536CrossRef
5.
go back to reference Inuiguchi M, Sakawa M (1996) Maximum regret analysis in linear programs with an interval objective function. In: Proceedings of IWSCI’96 Inuiguchi M, Sakawa M (1996) Maximum regret analysis in linear programs with an interval objective function. In: Proceedings of IWSCI’96
6.
go back to reference Averbakh I, Lebedev V (2005) On the complexity of minmax regret linear programming. Eur J Oper Res 160(1):227–231MathSciNetCrossRef Averbakh I, Lebedev V (2005) On the complexity of minmax regret linear programming. Eur J Oper Res 160(1):227–231MathSciNetCrossRef
7.
go back to reference Ma LH (2002) Research on method and application of robust optimization for uncertain system. PhD thesis, Zhejiang University, HangzhouCrossRef Ma LH (2002) Research on method and application of robust optimization for uncertain system. PhD thesis, Zhejiang University, HangzhouCrossRef
8.
go back to reference Liu GR, Han X (2003) Computational inverse techniques in nondestructive evaluation. CRC Press, FloridaCrossRef Liu GR, Han X (2003) Computational inverse techniques in nondestructive evaluation. CRC Press, FloridaCrossRef
9.
go back to reference Nakahara Y, Sasaki M, Gen M (1992) On the linear programming problems with interval coefficients. Comput Ind Eng 23(1):301–304MathSciNetCrossRef Nakahara Y, Sasaki M, Gen M (1992) On the linear programming problems with interval coefficients. Comput Ind Eng 23(1):301–304MathSciNetCrossRef
10.
go back to reference Kundu S (1997) Min-transitivity of fuzzy leftness relationship and its application to decision making. Fuzzy Sets Syst 86(3):357–367MathSciNetCrossRef Kundu S (1997) Min-transitivity of fuzzy leftness relationship and its application to decision making. Fuzzy Sets Syst 86(3):357–367MathSciNetCrossRef
11.
go back to reference Sengupta A, Pal TK (2000) On comparing interval numbers. Eur J Oper Res 127(1):28–43MathSciNet Sengupta A, Pal TK (2000) On comparing interval numbers. Eur J Oper Res 127(1):28–43MathSciNet
12.
13.
go back to reference Ramik J, Rommelfanger H (1993) A single- and a multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients. Fuzzy Sets Syst 57(2):203–208MathSciNetCrossRef Ramik J, Rommelfanger H (1993) A single- and a multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients. Fuzzy Sets Syst 57(2):203–208MathSciNetCrossRef
14.
go back to reference Dubois D, Prade H (1983) Ranking fuzzy numbers in the setting of possibility theory. Inf Sci 30(3):183–224CrossRef Dubois D, Prade H (1983) Ranking fuzzy numbers in the setting of possibility theory. Inf Sci 30(3):183–224CrossRef
15.
go back to reference Ohta H, Yamaguchi T (1996) Linear fractional goal programming in consideration of fuzzy solution. Eur J Oper Res 92(1):157–172 Ohta H, Yamaguchi T (1996) Linear fractional goal programming in consideration of fuzzy solution. Eur J Oper Res 92(1):157–172
16.
go back to reference Xu ZS, Da QL (2003) Possibility degree method for ranking interval numbers and its application. J Syst Eng 18(1):67–70 Xu ZS, Da QL (2003) Possibility degree method for ranking interval numbers and its application. J Syst Eng 18(1):67–70
17.
go back to reference Da QL, Liu XW (1999) Interval number linear programming and its satisfactory solution. Syst Eng Theory Pract 19(4):3–7CrossRef Da QL, Liu XW (1999) Interval number linear programming and its satisfactory solution. Syst Eng Theory Pract 19(4):3–7CrossRef
18.
go back to reference Facchinetti G, Ricci RG, Muzzioli S (1998) Note on ranking fuzzy triangular numbers. Int J Intell Syst 13(7):613–622 Facchinetti G, Ricci RG, Muzzioli S (1998) Note on ranking fuzzy triangular numbers. Int J Intell Syst 13(7):613–622
19.
go back to reference Zhang Q, Fan ZP, Pan DH (1999) A ranking approach for interval numbers in uncertain multiple attribute decision making problems. Syst Eng Theory Pract 19(5):129–133 MathSciNetCrossRef Zhang Q, Fan ZP, Pan DH (1999) A ranking approach for interval numbers in uncertain multiple attribute decision making problems. Syst Eng Theory Pract 19(5):129–133 MathSciNetCrossRef
20.
go back to reference Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188(1):1–13 Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188(1):1–13
21.
go back to reference Jiang C (2008) Theories and algorithms of uncertain optimizationbased on interval. PhD thesis, Hunan University, Changsha Jiang C (2008) Theories and algorithms of uncertain optimizationbased on interval. PhD thesis, Hunan University, Changsha
22.
go back to reference Liu BD, Zhao RQ, Wang G (2003) Uncertain programming with applications. Tsinghua University Press, Beijing Liu BD, Zhao RQ, Wang G (2003) Uncertain programming with applications. Tsinghua University Press, Beijing
23.
go back to reference Liu BD, Zhao RQ (1998) Stochastic programming and fuzzy programming. Tsinghua University Press, Beijing Liu BD, Zhao RQ (1998) Stochastic programming and fuzzy programming. Tsinghua University Press, Beijing
24.
go back to reference Hu YD (1990) Practical multi-objective optimization. Shanghai Technological Press, Shanghai Hu YD (1990) Practical multi-objective optimization. Shanghai Technological Press, Shanghai
25.
go back to reference Chen BL (2003) Optimization theory and algorithm. Tsinghua University Press, Beijing Chen BL (2003) Optimization theory and algorithm. Tsinghua University Press, Beijing
26.
go back to reference Krishnakumar K (1990) Micro-genetic algorithms for stationary and non-stationary function optimization. In: 1989 symposium on visual communications, image processing, and intelligent robotics systems, Philadelphia, PA, United States, February 1990 Krishnakumar K (1990) Micro-genetic algorithms for stationary and non-stationary function optimization. In: 1989 symposium on visual communications, image processing, and intelligent robotics systems, Philadelphia, PA, United States, February 1990
Metadata
Title
Mathematical Transformation Models of Nonlinear Interval Optimization
Authors
Chao Jiang
Xu Han
Huichao Xie
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-8546-3_3

Premium Partner