Skip to main content
Top

2024 | OriginalPaper | Chapter

Matrix Inequalities for the Difference Between Arithmetic and Heinz Means

Authors : Fatimah Alsaafin, Aliaa Burqan

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we provide new scalar and matrix inequalities that include the difference between the Heinz mean and the arithmetic mean. In specifically, we obtain the inequality.
\(\left( {\frac{{\text{p}}}{{\text{q}}}} \right)\left( {{\text{X}}\nabla {\text{Y}} - {\text{H}}_{{\text{q}}} \left( {{\text{X}},{\text{Y}}} \right)} \right) \le {\text{X}}\nabla {\text{Y}} - {\text{H}}_{{\text{p}}} \left( {{\text{X}},{\text{Y}}} \right) \le \left( {\frac{{1 - {\text{p}}}}{{1 - {\text{q}}}}} \right)\left( {{\text{X}}\nabla {\text{Y}} - {\text{H}}_{{\text{q}}} \left( {{\text{X}},{\text{Y}}} \right)} \right)\).
for any \({\text{n}} \times {\text{n }}\) complex positive definite matrices \({\text{X}}\) and \({\text{ Y}}\), where \({\text{ X}} < {\text{Y}}\) and \(0 < {\text{p}} \le {\text{q}} < 1\). Additionally, several determinant inequalities relevant to the Heinz and arithmetic means are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhatia, R., Davis, C.: More matrix forms of the arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14(1), 132–136 (1993)MathSciNetCrossRef Bhatia, R., Davis, C.: More matrix forms of the arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14(1), 132–136 (1993)MathSciNetCrossRef
3.
4.
go back to reference Burqan, A. (2019), Comparisons of Heinz Operator Means with Different Parameters. Malaysian Journal of Science, 38(Sp 1), 33–42.‏ Burqan, A. (2019), Comparisons of Heinz Operator Means with Different Parameters. Malaysian Journal of Science, 38(Sp 1), 33–42.‏
5.
go back to reference Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRef Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRef
6.
go back to reference Kittaneh, F. and Manasrah, Y. (2010), Improved Young and Heinz Inequalities for Matrices, Journal of Mathematical Analysis and Applications, 361(1), 262–269.8 Kittaneh, F. and Manasrah, Y. (2010), Improved Young and Heinz Inequalities for Matrices, Journal of Mathematical Analysis and Applications, 361(1), 262–269.8
7.
go back to reference Kittaneh, F. Moslehian, M and Sababheh, M. (2018), Quadratic interpolation of the Heinz means, Mathematical Inequalities and Applications, 21(3), 739–757 9 Kittaneh, F. Moslehian, M and Sababheh, M. (2018), Quadratic interpolation of the Heinz means, Mathematical Inequalities and Applications, 21(3), 739–757 9
8.
go back to reference Kittaneh, F.and Manasrah, Y. (2011), Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(9), 1031–1037.10 Kittaneh, F.and Manasrah, Y. (2011), Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(9), 1031–1037.10
9.
go back to reference Krnić, M. (2015), More accurate Young, Heinz, and Hölder inequalities for matrices. Periodica Mathematica Hungarica, 71(1), 78–91. 12 Krnić, M. (2015), More accurate Young, Heinz, and Hölder inequalities for matrices. Periodica Mathematica Hungarica, 71(1), 78–91. 12
10.
go back to reference Liao, W., Long, P.: Operator and matrix inequalities for Heinz mean. Turkish Journal of Inequalities 2(1), 65–75 (2018) Liao, W., Long, P.: Operator and matrix inequalities for Heinz mean. Turkish Journal of Inequalities 2(1), 65–75 (2018)
11.
go back to reference Liao, W., Wu, J.: Matrix inequalities for the difference between arithmetic mean and harmonic mean. Ann. Funct. Anal. 6(3), 191–202 (2015)MathSciNetCrossRef Liao, W., Wu, J.: Matrix inequalities for the difference between arithmetic mean and harmonic mean. Ann. Funct. Anal. 6(3), 191–202 (2015)MathSciNetCrossRef
12.
go back to reference Raïssouli, M., Almozini, M.: Refining and reversing the weighted arithmetic–geometric mean inequality involving convex functionals and application for the functional entropy. Journal of Inequalities and Applications 92, 1–22 (2020)MathSciNet Raïssouli, M., Almozini, M.: Refining and reversing the weighted arithmetic–geometric mean inequality involving convex functionals and application for the functional entropy. Journal of Inequalities and Applications 92, 1–22 (2020)MathSciNet
13.
go back to reference Sababheh, M. (2016), Convexity and matrix means, Linear Algebra and its Applications, 506(1Oct), 588–602.20. Sababheh, M. (2016), Convexity and matrix means, Linear Algebra and its Applications, 506(1Oct), 588–602.20.
14.
go back to reference Zhu, L.: (2019), Sharp bounds for Heinz mean by Heron mean and other means. American Institute of Mathematical Sciences 5(1), 723–731 (2020) Zhu, L.: (2019), Sharp bounds for Heinz mean by Heron mean and other means. American Institute of Mathematical Sciences 5(1), 723–731 (2020)
Metadata
Title
Matrix Inequalities for the Difference Between Arithmetic and Heinz Means
Authors
Fatimah Alsaafin
Aliaa Burqan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_2

Premium Partner