Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Mean Field at Distance One

Authors : Ka Yin Leung, Mirjam Kretzschmar, Odo Diekmann

Published in: Temporal Network Epidemiology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To be able to understand how infectious diseases spread on networks, it is important to understand the network structure itself in the absence of infection. In this text we consider dynamic network models that are inspired by the (static) configuration network. The networks are described by population-level averages such as the fraction of the population with k partners, k = 0, 1, 2,  This means that the bookkeeping contains information about individuals and their partners, but no information about partners of partners. Can we average over the population to obtain information about partners of partners? The answer is ‘it depends’, and this is where the mean field at distance one assumption comes into play. In this text we explain that, yes, we may average over the population (in the right way) in the static network. Moreover, we provide evidence in support of a positive answer for the network model that is dynamic due to partnership changes. If, however, we additionally allow for demographic changes, dependencies between partners arise. In earlier work we used the slogan ‘mean field at distance one’ as a justification of simply ignoring the dependencies. Here we discuss the subtleties that come with the mean field at distance one assumption, especially when demography is involved. Particular attention is given to the accuracy of the approximation in the setting with demography. Next, the mean field at distance one assumption is discussed in the context of an infection superimposed on the network. We end with the conjecture that an extension of the bookkeeping leads to an exact description of the network structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Leung, K.Y., Diekmann, O.: Dangerous connections: on binding site models of infectious disease dynamics. J. Math. Biol. 74, 619–671 (2017)MathSciNetCrossRefMATH Leung, K.Y., Diekmann, O.: Dangerous connections: on binding site models of infectious disease dynamics. J. Math. Biol. 74, 619–671 (2017)MathSciNetCrossRefMATH
2.
go back to reference Barbour, A.D., Reinert, G.: Approximating the epidemic curve. Electron. J. Probab. 18(54), 1–30 (2013)MathSciNetMATH Barbour, A.D., Reinert, G.: Approximating the epidemic curve. Electron. J. Probab. 18(54), 1–30 (2013)MathSciNetMATH
4.
go back to reference Kiss, I.Z., Miller, J.C., Simon, O.: Mathematics of Epidemics on Networks: From Exact to Approximate Models. Springer, Cham (2017)CrossRefMATH Kiss, I.Z., Miller, J.C., Simon, O.: Mathematics of Epidemics on Networks: From Exact to Approximate Models. Springer, Cham (2017)CrossRefMATH
6.
go back to reference Van der Hofstad, R.: Random Graphs and Complex Networks, vol. I. Cambridge University Press, Cambridge (2016) Van der Hofstad, R.: Random Graphs and Complex Networks, vol. I. Cambridge University Press, Cambridge (2016)
7.
go back to reference Leung, K.Y., Kretzschmar, M.E.E., Diekmann, O.: Dynamic concurrent partnership networks incorporating demography. Theor. Popul. Biol. 82, 229–239 (2012)CrossRefMATH Leung, K.Y., Kretzschmar, M.E.E., Diekmann, O.: Dynamic concurrent partnership networks incorporating demography. Theor. Popul. Biol. 82, 229–239 (2012)CrossRefMATH
9.
go back to reference Britton, T., Lindholm, M., Turova, T.: A dynamic network in a dynamic population: asymptotic properties. J. Appl. Prob. 48, 1163–1178 (2011)MathSciNetCrossRefMATH Britton, T., Lindholm, M., Turova, T.: A dynamic network in a dynamic population: asymptotic properties. J. Appl. Prob. 48, 1163–1178 (2011)MathSciNetCrossRefMATH
10.
go back to reference Lashari, A.A., Trapman, P.: Branching process approach for epidemics in dynamic partnership network. J. Math. Biol. (2017). doi:10.1007/s00285-017-1147-0 Lashari, A.A., Trapman, P.: Branching process approach for epidemics in dynamic partnership network. J. Math. Biol. (2017). doi:10.1007/s00285-017-1147-0
11.
go back to reference Leung, K.Y., Kretzschmar, M.E.E., Diekmann, O.: SI infection of a dynamic partnership network: characterization of R 0. J. Math. Biol. 71, 1–56 (2015)MathSciNetCrossRefMATH Leung, K.Y., Kretzschmar, M.E.E., Diekmann, O.: SI infection of a dynamic partnership network: characterization of R 0. J. Math. Biol. 71, 1–56 (2015)MathSciNetCrossRefMATH
12.
go back to reference Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRef Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRef
14.
go back to reference Ball, F., Britton, T., Sirl, D.: A network with tunable clustering, degree correlation and degree distribution, and an epidemic thereon. J. Math. Biol. 66, 979–1019 (2013)MathSciNetCrossRefMATH Ball, F., Britton, T., Sirl, D.: A network with tunable clustering, degree correlation and degree distribution, and an epidemic thereon. J. Math. Biol. 66, 979–1019 (2013)MathSciNetCrossRefMATH
15.
go back to reference Decreusefond, L., Dhersin, J.-S., Moyal, P., Tran, V.C.: Large graph limit for an SIR process in random network with heterogeneous connectivity. Ann. Appl. Probab. 22, 541–575 (2012)MathSciNetCrossRefMATH Decreusefond, L., Dhersin, J.-S., Moyal, P., Tran, V.C.: Large graph limit for an SIR process in random network with heterogeneous connectivity. Ann. Appl. Probab. 22, 541–575 (2012)MathSciNetCrossRefMATH
16.
go back to reference Janson, S., Luczak, M., Windridge, P.: Law of large numbers for the SIR epidemic on a random graph with given degrees. Random Struct. Algor. 45(4), 724–761 (2014)MathSciNetCrossRefMATH Janson, S., Luczak, M., Windridge, P.: Law of large numbers for the SIR epidemic on a random graph with given degrees. Random Struct. Algor. 45(4), 724–761 (2014)MathSciNetCrossRefMATH
17.
go back to reference Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2013)MATH Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2013)MATH
Metadata
Title
Mean Field at Distance One
Authors
Ka Yin Leung
Mirjam Kretzschmar
Odo Diekmann
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5287-3_5

Premium Partner