Skip to main content
Top

2024 | OriginalPaper | Chapter

Mean Field Limit for the Kac Model and Grand Canonical Formalism

Authors : Thierry Paul, Mario Pulvirenti, Sergio Simonella

Published in: From Particle Systems to Partial Differential Equations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the classical Kac’s model for the approximation of the Boltzmann equation, and study the correlation error measuring the defect of propagation of chaos in the mean field limit. This contribution is inspired by a recent paper of the same authors [23] where a large class of models, including quantum systems, are considered. Here we outline the main ideas in the context of grand canonical measures, for which both the evolution equations and the proof simplify.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aoki, K., Pulvirenti, M., Simonella, S., Tsuji, T.: Backward clusters, hierarchy and wild sums for a hard sphere system in a low-density regime. Math. Mod. and Meth. in App. Sci. 25(5), 995–1010 (2015) Aoki, K., Pulvirenti, M., Simonella, S., Tsuji, T.: Backward clusters, hierarchy and wild sums for a hard sphere system in a low-density regime. Math. Mod. and Meth. in App. Sci. 25(5), 995–1010 (2015)
2.
go back to reference Bogolyubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. Moscow: State Technical Press (1946) in Russian; English translation in Studies in Statistical Mechanics I, edited by J. de Boer and G. E. Uhlenbeck, part A, Amsterdam: North-Holland (1962) Bogolyubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. Moscow: State Technical Press (1946) in Russian; English translation in Studies in Statistical Mechanics I, edited by J. de Boer and G. E. Uhlenbeck, part A, Amsterdam: North-Holland (1962)
3.
go back to reference Boldrighini, C., De Masi, A., Pellegrinotti, A.: Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equations. Stoch. Process. Appl. 42, 1–30 (1992) Boldrighini, C., De Masi, A., Pellegrinotti, A.: Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equations. Stoch. Process. Appl. 42, 1–30 (1992)
4.
go back to reference Caprino, S., Pulvirenti, M.: A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result. Commun. Math. Phys. 166(3), 603–631 (1995)MathSciNetCrossRef Caprino, S., Pulvirenti, M.: A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result. Commun. Math. Phys. 166(3), 603–631 (1995)MathSciNetCrossRef
5.
go back to reference Caprino, S., De Masi, A., Presutti, E., Pulvirenti, M.: A derivation of the Broadwell equation. Commun. Math. Phys. 135(3), 443–465 (1991)MathSciNetCrossRef Caprino, S., De Masi, A., Presutti, E., Pulvirenti, M.: A derivation of the Broadwell equation. Commun. Math. Phys. 135(3), 443–465 (1991)MathSciNetCrossRef
6.
go back to reference Caprino, S., Pulvirenti, M., Wagner, W.: A particle systems approximating stationary solutions to the Boltzmann equation SIAM. J. Math. Anal. 4, 913–934 (1998) Caprino, S., Pulvirenti, M., Wagner, W.: A particle systems approximating stationary solutions to the Boltzmann equation SIAM. J. Math. Anal. 4, 913–934 (1998)
7.
go back to reference Carlen, E., Carvalho, M.-C., Gabetta, E.: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. CPAM 53(3), 370–397 (2000)MathSciNet Carlen, E., Carvalho, M.-C., Gabetta, E.: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. CPAM 53(3), 370–397 (2000)MathSciNet
8.
go back to reference Carlen, E., Carvalho, M.-C., Gabetta, E.: On the relation between rates of relaxation and convergence of wild sums for solutions of the Kac equation. J. Funct. Anal. 220(2), 362–387 (2005)MathSciNetCrossRef Carlen, E., Carvalho, M.-C., Gabetta, E.: On the relation between rates of relaxation and convergence of wild sums for solutions of the Kac equation. J. Funct. Anal. 220(2), 362–387 (2005)MathSciNetCrossRef
9.
go back to reference De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 633–696 (1994) De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 633–696 (1994)
10.
go back to reference De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamical Limits. In: Lecture Notes in Mathematics, vol. 1501. Springer-Verlag (1991) De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamical Limits. In: Lecture Notes in Mathematics, vol. 1501. Springer-Verlag (1991)
11.
go back to reference Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25, 115–132 (1997)MathSciNetCrossRef Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25, 115–132 (1997)MathSciNetCrossRef
12.
13.
14.
go back to reference Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley and Los Angeles (1956) Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley and Los Angeles (1956)
15.
go back to reference Kac, M.: Probability and Related Topics in Physical Sciences. Interscience, London-New York (1959) Kac, M.: Probability and Related Topics in Physical Sciences. Interscience, London-New York (1959)
16.
go back to reference Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. II. Fluctuations. Nonlinearity 9, 27–51 (1996) Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. II. Fluctuations. Nonlinearity 9, 27–51 (1996)
17.
go back to reference Masi, A., Presutti, E., Tsagkarogiannis, D., Vares, M.E.: Truncated correlations in the stirring process with births and deaths. Electron. J. Probab. 17, 1–35 (2012)MathSciNet Masi, A., Presutti, E., Tsagkarogiannis, D., Vares, M.E.: Truncated correlations in the stirring process with births and deaths. Electron. J. Probab. 17, 1–35 (2012)MathSciNet
19.
go back to reference Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Relat. Fields 161(1–2), 1–59 (2015)MathSciNetCrossRef Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Relat. Fields 161(1–2), 1–59 (2015)MathSciNetCrossRef
20.
go back to reference Nota, A., Velázquez, J.J.L., Winter, R.: Interacting particle systems with long-range interactions: scaling limits and kinetic equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 32(2), 335–377 (2021) Nota, A., Velázquez, J.J.L., Winter, R.: Interacting particle systems with long-range interactions: scaling limits and kinetic equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 32(2), 335–377 (2021)
21.
go back to reference A. Nota, J.J.L. Velázquez, Winter, R.: Interacting particle systems with long-range interactions: approximation by tagged particles in random fields. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 33(2), 439–506 (2022) A. Nota, J.J.L. Velázquez, Winter, R.: Interacting particle systems with long-range interactions: approximation by tagged particles in random fields. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 33(2), 439–506 (2022)
22.
go back to reference Paul, T., Pulvirenti, M.: Asymptotic expansion of the mean-field approximation. Discret. Contin. Dyn. Syst. A 39, 1891–1921 (2019)MathSciNetCrossRef Paul, T., Pulvirenti, M.: Asymptotic expansion of the mean-field approximation. Discret. Contin. Dyn. Syst. A 39, 1891–1921 (2019)MathSciNetCrossRef
23.
go back to reference Paul, T., Pulvirenti, M., Simonella, S.: On the size of chaos in the mean field dynamics. Arch. Rat. Mech. Anal. 231, 285–317 (2019)MathSciNetCrossRef Paul, T., Pulvirenti, M., Simonella, S.: On the size of chaos in the mean field dynamics. Arch. Rat. Mech. Anal. 231, 285–317 (2019)MathSciNetCrossRef
24.
go back to reference Pulvirenti, M., Simonella, S.: A Brief Introduction to the Scaling Limits and Effective Equations in Kinetic Theory. In: Albi, G., Merino-Aceituno, S., Nota, A., Zanella, M. (eds.) Trails in Kinetic Theory. SEMA SIMAI Springer Series, vol. 25, pp. 183–208 (2021) Pulvirenti, M., Simonella, S.: A Brief Introduction to the Scaling Limits and Effective Equations in Kinetic Theory. In: Albi, G., Merino-Aceituno, S., Nota, A., Zanella, M. (eds.) Trails in Kinetic Theory. SEMA SIMAI Springer Series, vol. 25, pp. 183–208 (2021)
25.
go back to reference Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Inven. Math. 207(3), 1135–1237 (2017)MathSciNetCrossRef Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Inven. Math. 207(3), 1135–1237 (2017)MathSciNetCrossRef
26.
go back to reference Spohn, H.: Large Scale Dynamics of Interacting Particles. In: Texts and Monographs in Physics. Springer-Verlag, Heidelberg (1991) Spohn, H.: Large Scale Dynamics of Interacting Particles. In: Texts and Monographs in Physics. Springer-Verlag, Heidelberg (1991)
27.
go back to reference Sznitman, A.-S.: Topics in propagation of chaos. In: École d’été de Probabilités de Saint-Flour XIX 1989. Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991) Sznitman, A.-S.: Topics in propagation of chaos. In: École d’été de Probabilités de Saint-Flour XIX 1989. Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)
Metadata
Title
Mean Field Limit for the Kac Model and Grand Canonical Formalism
Authors
Thierry Paul
Mario Pulvirenti
Sergio Simonella
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_12

Premium Partner