Skip to main content
Top
Published in:

13-04-2023 | Original Paper

Mean–variance vs trend–risk portfolio selection

Authors: David Neděla, Sergio Ortobelli, Tomáš Tichý

Published in: Review of Managerial Science | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we provide an alternative trend (time)-dependent risk measure to Ruttiens’ accrued returns variability (Ruttiens in Comput Econ 41:407–424, 2013). We propose to adjust the calculation procedure to achieve an alternative risk measure. Our modification eliminates static mean component and it is based on the deviation of squared dispersions, which reflects the trend (time factor) precisely. Moreover, we also present a new perspective on dependency measures and we apply a PCA to a new correlation matrix in order to determine a parametric and nonparametric return approximation. In addition, the two-phase portfolio selection strategy is considered, where the mean–variance portfolio selection strategies represent the first optimization. The second one is the minimization of deviations from their trend leading to identical mean and final wealth. Finally, an empirical analysis verify the property and benefit of portfolio selection strategies based on these trend-dependent measures. In particular, the ex-post results show that applying the modified measure allows us to reduce the risk with respect to the trend of several portfolio strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We also refer to the accrued returns variability as trend-dependent risk measure, time-dependent risk measure, or dynamic risk measure.
 
2
All observations in 2002 are used for the initial optimization, therefore the total investment period is reduced by one year.
 
3
While the first strategy (Strategy 1) is a global minimum variance portfolio (GMV), the last one (Strategy 40) is a maximum expected return portfolio (MER). Therefore, for the rest of the strategies, we compute the lower bound of the expected return \(M \in (x_{GMV}^{\prime }r, x_{MER}^{\prime }r)\) with the equidistant difference d calculated as \(d=\frac{(x_{MER}^{\prime }r-x_{GMV}^{\prime }r)}{N-1}\), where N is the number of strategies. Recall that in this empirical analysis we use \(N=40\).
 
4
According to our preliminary analysis, even when we include more factors explaining the given variability, the composition of the portfolios is not substantially different. In general, the portfolio statistics do not change significantly.
 
5
In order to measure the performance of the portfolio, we selected the usually used Sharpe ratio (SR) ( Sharpe 1994; Biglova et al. 2004). This indicator was chosen due to its explanatory power based on the entire distribution of returns. The Sharpe ratio expresses the expected excess return for the unity of risk measured as standard deviation calculated as \(SR=\frac{E(x^{\prime }r-r_b)}{\sigma _{x^{\prime }r}}\), where \(\sigma _{x^{\prime }r}\) denotes the standard deviation of the portfolio and \(r_b\) is the benchmark return, see Rachev et al. (2008). Following Ortobelli et al. (2017), we define new types of trend-dependent ratios TDR1 and TDR2. These two measures indicate the value of excess wealth per unit of various kinds of risk, static or trend-dependent. Specifically, the formulations of TDR1 and TDR2 are given by \(TDR1=\frac{W_T-1}{ARV_{\text {mod}}(x^{\prime }r)}\) and \(TDR2=\frac{W_T-1}{\sigma _{x^{\prime }r}+ARV_{\text {mod}}(x^{\prime }r)}\).
 
Literature
go back to reference Altman EI, Caouette JB, Narayanan P (1998) Credit-risk measurement and management: the ironic challenge in the next decade. Financ Anal J 54:7–11CrossRef Altman EI, Caouette JB, Narayanan P (1998) Credit-risk measurement and management: the ironic challenge in the next decade. Financ Anal J 54:7–11CrossRef
go back to reference Artzner P, Delbaen F, Eber JM et al (1999) Coherent measures of risk. Math Financ 9:203–228CrossRef Artzner P, Delbaen F, Eber JM et al (1999) Coherent measures of risk. Math Financ 9:203–228CrossRef
go back to reference Biglova A, Ortobelli S, Rachev ST et al (2004) Different approaches to risk estimation in portfolio theory. J Portf Manag 31(1):103–112CrossRef Biglova A, Ortobelli S, Rachev ST et al (2004) Different approaches to risk estimation in portfolio theory. J Portf Manag 31(1):103–112CrossRef
go back to reference Biglova A, Ortobelli S, Fabozzi F (2014) Portfolio selection in the presence of systemic risk. J Asset Manag 15:285–299CrossRef Biglova A, Ortobelli S, Fabozzi F (2014) Portfolio selection in the presence of systemic risk. J Asset Manag 15:285–299CrossRef
go back to reference Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis. Oxford University Press, LondonCrossRef Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis. Oxford University Press, LondonCrossRef
go back to reference Delbaen F, Eber J, Heath D (1998) Coherent measures of risk. Math Financ 4:203–228 Delbaen F, Eber J, Heath D (1998) Coherent measures of risk. Math Financ 4:203–228
go back to reference Egozcue M, Fuentes García L, Wong W et al (2011) Do investors like to diversify? A study of markowitz preferences. Eur J Oper Res 215:188–193CrossRef Egozcue M, Fuentes García L, Wong W et al (2011) Do investors like to diversify? A study of markowitz preferences. Eur J Oper Res 215:188–193CrossRef
go back to reference Fan J, Fan Y, Lv J (2008) High dimensional covariance matrix estimation using a factor model. J Econom 147:186–197CrossRef Fan J, Fan Y, Lv J (2008) High dimensional covariance matrix estimation using a factor model. J Econom 147:186–197CrossRef
go back to reference Fastrich B, Paterlini S, Winker P (2015) Constructing optimal sparse portfolios using regularization methods. Comput Manag Sci 12:417–434CrossRef Fastrich B, Paterlini S, Winker P (2015) Constructing optimal sparse portfolios using regularization methods. Comput Manag Sci 12:417–434CrossRef
go back to reference Hallerbach WG, Spronk J (2002) The relevance of mcdm for financial decisions. J Multi-Crit Decis Anal 11:187–195CrossRef Hallerbach WG, Spronk J (2002) The relevance of mcdm for financial decisions. J Multi-Crit Decis Anal 11:187–195CrossRef
go back to reference Hirschman AO (1964) The paternity of an index. Am Econ Rev 54:761–762 Hirschman AO (1964) The paternity of an index. Am Econ Rev 54:761–762
go back to reference Jorion P (2000) VaR: the new benchmark for managing financial risk. McGraw Hill, New York Jorion P (2000) VaR: the new benchmark for managing financial risk. McGraw Hill, New York
go back to reference Kouaissah N, Hocine A (2021) Forecasting systemic risk in portfolio selection: the role of technical trading rules. J Forecast 40:708–729CrossRef Kouaissah N, Hocine A (2021) Forecasting systemic risk in portfolio selection: the role of technical trading rules. J Forecast 40:708–729CrossRef
go back to reference Malavasi M, Ortobelli S, Trueck S (2020) Second order of stochastic dominance efficiency vs mean variance efficiency. Eur J Oper Res 290:1192–1206CrossRef Malavasi M, Ortobelli S, Trueck S (2020) Second order of stochastic dominance efficiency vs mean variance efficiency. Eur J Oper Res 290:1192–1206CrossRef
go back to reference Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419CrossRef Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419CrossRef
go back to reference Markowitz HM (1952) Portfolio selection. J Financ 7:77–91 Markowitz HM (1952) Portfolio selection. J Financ 7:77–91
go back to reference Markowitz HM (1959) Portfolio selection: efficient diversification of investment. Wiley, New York Markowitz HM (1959) Portfolio selection: efficient diversification of investment. Wiley, New York
go back to reference Miller N, Ruszczyński A (2008) Risk-adjusted probability measures in portfolio optimization with coherent measures of risk. Eur J Oper Res 191:193–206CrossRef Miller N, Ruszczyński A (2008) Risk-adjusted probability measures in portfolio optimization with coherent measures of risk. Eur J Oper Res 191:193–206CrossRef
go back to reference Moorman TC (2014) An empirical investigation of methods to reduce transaction costs. J Empir Financ 29:230–246CrossRef Moorman TC (2014) An empirical investigation of methods to reduce transaction costs. J Empir Financ 29:230–246CrossRef
go back to reference Nolan JP, Ojeda-Revah D (2013) Linear and nonlinear regression with stable errors. J Econom 172:186–194CrossRef Nolan JP, Ojeda-Revah D (2013) Linear and nonlinear regression with stable errors. J Econom 172:186–194CrossRef
go back to reference Ortobelli S, Tichý T (2015) On the impact of semidefinite positive correlation measures in portfolio theory. Ann Oper Res 235:625–652CrossRef Ortobelli S, Tichý T (2015) On the impact of semidefinite positive correlation measures in portfolio theory. Ann Oper Res 235:625–652CrossRef
go back to reference Ortobelli S, Petronio F, Lando T (2017) A portfolio return definition coherent with the investors’ preferences. IMA J Manag Math 28:451–466 Ortobelli S, Petronio F, Lando T (2017) A portfolio return definition coherent with the investors’ preferences. IMA J Manag Math 28:451–466
go back to reference Ortobelli S, Kouaissah N, Tichý T (2019) On the use of conditional expectation in portfolio selection problems. Ann Oper Res 274:501–530CrossRef Ortobelli S, Kouaissah N, Tichý T (2019) On the use of conditional expectation in portfolio selection problems. Ann Oper Res 274:501–530CrossRef
go back to reference Rachev S, Mittnik S (2000) Stable paretian models in finance. Wiley, Chichester Rachev S, Mittnik S (2000) Stable paretian models in finance. Wiley, Chichester
go back to reference Rachev S, Ortobelli S, Stoyanov S et al (2008) Desirable properties of an ideal risk measure in portfolio theory. Int J Theor Appl Financ 11:447–469CrossRef Rachev S, Ortobelli S, Stoyanov S et al (2008) Desirable properties of an ideal risk measure in portfolio theory. Int J Theor Appl Financ 11:447–469CrossRef
go back to reference Rockafellar R, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26:1443–1471CrossRef Rockafellar R, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26:1443–1471CrossRef
go back to reference Ruppert D, Wand M (1994) Multivariate locally weighted least squares regression. Ann Stat 22:1346–1370CrossRef Ruppert D, Wand M (1994) Multivariate locally weighted least squares regression. Ann Stat 22:1346–1370CrossRef
go back to reference Ruttiens A (2013) Portfolio risk measures: the time’s arrow matters. Comput Econ 41:407–424CrossRef Ruttiens A (2013) Portfolio risk measures: the time’s arrow matters. Comput Econ 41:407–424CrossRef
go back to reference Scott D (2015) Multivariate density estimation: theory, practice, and visualization. Wiley, New YorkCrossRef Scott D (2015) Multivariate density estimation: theory, practice, and visualization. Wiley, New YorkCrossRef
go back to reference Tobin J (1958) Estimation of relationships for limited dependent variables. Econometrica 26:24–36CrossRef Tobin J (1958) Estimation of relationships for limited dependent variables. Econometrica 26:24–36CrossRef
go back to reference Woerheide W, Persson D (1992) An index of portfolio diversification. Financ Serv Rev 2:73–85CrossRef Woerheide W, Persson D (1992) An index of portfolio diversification. Financ Serv Rev 2:73–85CrossRef
Metadata
Title
Mean–variance vs trend–risk portfolio selection
Authors
David Neděla
Sergio Ortobelli
Tomáš Tichý
Publication date
13-04-2023
Publisher
Springer Berlin Heidelberg
Published in
Review of Managerial Science / Issue 7/2024
Print ISSN: 1863-6683
Electronic ISSN: 1863-6691
DOI
https://doi.org/10.1007/s11846-023-00660-x

Other articles of this Issue 7/2024

Review of Managerial Science 7/2024 Go to the issue

Premium Partner