Skip to main content
Top
Published in: Advances in Manufacturing 4/2016

30-11-2016

Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies

Authors: J. Bellmann, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A. E. Tekkaya

Published in: Advances in Manufacturing | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automotive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lysenko D, Ermolaev V, Dudin A (1970) Methods of pressure welding. US 3520049 Lysenko D, Ermolaev V, Dudin A (1970) Methods of pressure welding. US 3520049
2.
go back to reference Bellmann J, Lueg-Althoff J, Goebel G et al (2016) Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 279–288 Bellmann J, Lueg-Althoff J, Goebel G et al (2016) Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 279–288
3.
go back to reference Botros K, Groves T (1980) Fundamental impact welding parameters: an experimental investigation using a 76-mm powder cannon. J Appl Phys 51(7):3706–3714CrossRef Botros K, Groves T (1980) Fundamental impact welding parameters: an experimental investigation using a 76-mm powder cannon. J Appl Phys 51(7):3706–3714CrossRef
4.
go back to reference Groche P, Wagner M, Pabst C et al (2014) Development of a novel test rig to investigate the fundamentals of impact welding. J Mater Process Technol 214(10):2009–2017CrossRef Groche P, Wagner M, Pabst C et al (2014) Development of a novel test rig to investigate the fundamentals of impact welding. J Mater Process Technol 214(10):2009–2017CrossRef
5.
go back to reference Cuq-Lelandais J, Ferreira S, Avrillaud G et al (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming, p 199–206 Cuq-Lelandais J, Ferreira S, Avrillaud G et al (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming, p 199–206
6.
go back to reference Geyer M, Rebensdorf A, Boehm S (2014) Influence of the boundary layer in magnetic pulse sheet welds of aluminium to steel. In: Huh H, Tekkaya AE (eds) Proceedings of the international conference on high speed forming, p 51–60 Geyer M, Rebensdorf A, Boehm S (2014) Influence of the boundary layer in magnetic pulse sheet welds of aluminium to steel. In: Huh H, Tekkaya AE (eds) Proceedings of the international conference on high speed forming, p 51–60
7.
go back to reference Gafri O, Izhar A, Livshitz Y et al (2006) Magnetic pulse acceleration. In: Kleiner M (ed) Proceedings of the 2nd international conference on high speed forming, p 33–40 Gafri O, Izhar A, Livshitz Y et al (2006) Magnetic pulse acceleration. In: Kleiner M (ed) Proceedings of the 2nd international conference on high speed forming, p 33–40
8.
go back to reference Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. In: Kleiner M, Tekkaya AE (eds) Proceedings of the 3rd international conference on high speed forming, p 13–22 Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. In: Kleiner M, Tekkaya AE (eds) Proceedings of the 3rd international conference on high speed forming, p 13–22
9.
go back to reference Mori K, Bay N, Fratini L et al (2013) Joining by plastic deformation. CIRP Ann Manuf Technol 62(2):673–694CrossRef Mori K, Bay N, Fratini L et al (2013) Joining by plastic deformation. CIRP Ann Manuf Technol 62(2):673–694CrossRef
10.
go back to reference Groche P, Wohletz S, Brenneis M et al (2014) Joining by forming: a review on joint mechanisms, applications and future trends. J Mater Process Technol 214(10):1972–1994CrossRef Groche P, Wohletz S, Brenneis M et al (2014) Joining by forming: a review on joint mechanisms, applications and future trends. J Mater Process Technol 214(10):1972–1994CrossRef
11.
go back to reference Kapil A, Sharma A (2015) Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100:35–58CrossRef Kapil A, Sharma A (2015) Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100:35–58CrossRef
13.
go back to reference Dietz H, Lippmann H (1969) Messung der magnetischen Induktion in einer Magneform-Kompressionsspule. Elektrotech Z 90(3):51–54 Dietz H, Lippmann H (1969) Messung der magnetischen Induktion in einer Magneform-Kompressionsspule. Elektrotech Z 90(3):51–54
14.
go back to reference Bauer D (1967) Ein neuartiges Messverfahren zur Bestimmung der Kraefte, Arbeiten, Formaenderungen, Formaenderungsgeschwindigkeiten und Formaenderungsfestigkeiten beim Aufweiten zylindrischer Werkstuecke durch schnellveraenderliche magnetische Felder, Dr.-Ing.-Dissertation, Technische Hochschule Hannover, Hannover Bauer D (1967) Ein neuartiges Messverfahren zur Bestimmung der Kraefte, Arbeiten, Formaenderungen, Formaenderungsgeschwindigkeiten und Formaenderungsfestigkeiten beim Aufweiten zylindrischer Werkstuecke durch schnellveraenderliche magnetische Felder, Dr.-Ing.-Dissertation, Technische Hochschule Hannover, Hannover
15.
go back to reference Beerwald C (2004) Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Dissertation, Technische Universitaet Dortmund Beerwald C (2004) Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Dissertation, Technische Universitaet Dortmund
16.
go back to reference Veenaas S, Vollertsen F, Krueger M et al (2016) Determination of forming speed at a laser shock stretch drawing process. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming 2016, p 105–114 Veenaas S, Vollertsen F, Krueger M et al (2016) Determination of forming speed at a laser shock stretch drawing process. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming 2016, p 105–114
17.
go back to reference Strand OT, Goosman DR, Martinez C et al (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:83108CrossRef Strand OT, Goosman DR, Martinez C et al (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:83108CrossRef
18.
go back to reference Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669–4675CrossRef Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669–4675CrossRef
19.
go back to reference Goosman DR (1996) The multibeam Fabry-Pérot velocimeter: efficient measurement of high velocities. Sci Technol Rev (7):12–19 Goosman DR (1996) The multibeam Fabry-Pérot velocimeter: efficient measurement of high velocities. Sci Technol Rev (7):12–19
20.
go back to reference Zhang Y, L’Eplattenier P, Taber G et al (2008) Numerical simulation and experimental study for magnetic pulse welding process on AA6061-T6 and Cu101 sheet. In: The 10th international LS-DYNA users conference, Dearborn Zhang Y, L’Eplattenier P, Taber G et al (2008) Numerical simulation and experimental study for magnetic pulse welding process on AA6061-T6 and Cu101 sheet. In: The 10th international LS-DYNA users conference, Dearborn
21.
go back to reference Jaeger A, Tekkaya AE (2012) Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 13–22 Jaeger A, Tekkaya AE (2012) Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 13–22
22.
go back to reference Winkler R (1973) Hochgeschwindigkeitsbearbeitung: Grundlagen und technische Anwendung elektrisch erzeugter Schockwellen und Impulsmagnetfelder. VEB Verlag Technik, Berlin Winkler R (1973) Hochgeschwindigkeitsbearbeitung: Grundlagen und technische Anwendung elektrisch erzeugter Schockwellen und Impulsmagnetfelder. VEB Verlag Technik, Berlin
23.
go back to reference Watanabe M, Kumai S, Hagimoto G et al (2009) Interfacial microstructure of aluminium/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50(6):1279–1285 Watanabe M, Kumai S, Hagimoto G et al (2009) Interfacial microstructure of aluminium/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50(6):1279–1285
24.
go back to reference Rebensdorf A, Boehm S (2016) Increase of the reproducibility of joints welded with magnetic pulse technology using graded surface topographies. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 125–136 Rebensdorf A, Boehm S (2016) Increase of the reproducibility of joints welded with magnetic pulse technology using graded surface topographies. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 125–136
25.
go back to reference Pabst C, Groche P (2014) Electromagnetic pulse welding: process insights by high speed imaging and numerical simulation. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming 2014, p 77–88 Pabst C, Groche P (2014) Electromagnetic pulse welding: process insights by high speed imaging and numerical simulation. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming 2014, p 77–88
26.
go back to reference Poynton WA, Travis FW, Johnson W (1968) The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures. Int J Mech Sci 10:385–401CrossRef Poynton WA, Travis FW, Johnson W (1968) The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures. Int J Mech Sci 10:385–401CrossRef
27.
go back to reference Stern A, Becher O, Nahmany M et al (2015) Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples. Weld J 94:257–284 Stern A, Becher O, Nahmany M et al (2015) Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples. Weld J 94:257–284
28.
go back to reference Kakizaki S, Watanabe M, Kumaji S (2011) Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Mater Trans 52(5):1003–1008CrossRef Kakizaki S, Watanabe M, Kumaji S (2011) Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Mater Trans 52(5):1003–1008CrossRef
29.
go back to reference Bergmann OR (1984) The scientific basis of metal bonding with explosives. In: The 8th international ASME conference on high energy rate fabrication 1984, p 197–202 Bergmann OR (1984) The scientific basis of metal bonding with explosives. In: The 8th international ASME conference on high energy rate fabrication 1984, p 197–202
30.
go back to reference Friichtenicht JF, Slattery JC (1963) Ionization associated with hypervelocity impact. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 591–612 Friichtenicht JF, Slattery JC (1963) Ionization associated with hypervelocity impact. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 591–612
31.
go back to reference Eichhorn G (1976) Analysis of the hypervelocity impact process from impact flash measurements. Planet Space Sci 24(8):771–781CrossRef Eichhorn G (1976) Analysis of the hypervelocity impact process from impact flash measurements. Planet Space Sci 24(8):771–781CrossRef
32.
go back to reference Lueg-Althoff J, Schilling B, Bellmann J et al (2016) Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 259–268 Lueg-Althoff J, Schilling B, Bellmann J et al (2016) Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 259–268
33.
go back to reference Pond RB, Mombley C, Glass CM (1963) Energy balances in hypervelocity penetration. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 401–419 Pond RB, Mombley C, Glass CM (1963) Energy balances in hypervelocity penetration. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 401–419
34.
go back to reference Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH
35.
go back to reference Lorenz A, Lueg-Althoff J, Bellmann J et al (2016) Workpiece positioning during magnetic pulse welding of aluminum-steel joints. Weld J 95(3):101–109 Lorenz A, Lueg-Althoff J, Bellmann J et al (2016) Workpiece positioning during magnetic pulse welding of aluminum-steel joints. Weld J 95(3):101–109
36.
go back to reference Sutton MA, Schreier HW, Orteu JJ (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York Sutton MA, Schreier HW, Orteu JJ (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York
37.
go back to reference Erlenmaier W, Kappes J, Tatarczyk A et al (2014) Efficient punching using integrated flattening. In: Liewald M (ed) Neuere Entwicklungen in der Blechumformung. Fellbach, p 81–97 Erlenmaier W, Kappes J, Tatarczyk A et al (2014) Efficient punching using integrated flattening. In: Liewald M (ed) Neuere Entwicklungen in der Blechumformung. Fellbach, p 81–97
38.
go back to reference Hokari H, Sato T, Kawauchi K et al (1998) Magnetic impulse welding of aluminium tube and copper tube with various core materials. Weld Int 12(8):619–626CrossRef Hokari H, Sato T, Kawauchi K et al (1998) Magnetic impulse welding of aluminium tube and copper tube with various core materials. Weld Int 12(8):619–626CrossRef
39.
go back to reference DIN Deutsches Institut fuer Normung e.V. (2013) Welding and allied processes—classification of geometric imperfections in metallic materials—Part 2: welding with pressure (DIN EN ISO 6520) DIN Deutsches Institut fuer Normung e.V. (2013) Welding and allied processes—classification of geometric imperfections in metallic materials—Part 2: welding with pressure (DIN EN ISO 6520)
40.
go back to reference DIN Deutsches Institut fuer Normung e.V. (1982) Testing of sandwiches; climbing drum peel test (DIN 53295) DIN Deutsches Institut fuer Normung e.V. (1982) Testing of sandwiches; climbing drum peel test (DIN 53295)
41.
go back to reference DIN Deutsches Institut fuer Normung e.V. (1979) Testing of adhesives for metals and adhesively bonded metal joints; test specimens; manufacturing (DIN 53281) DIN Deutsches Institut fuer Normung e.V. (1979) Testing of adhesives for metals and adhesively bonded metal joints; test specimens; manufacturing (DIN 53281)
42.
go back to reference Broeckhove J, Willemsens L (2010) Experimental research on magnetic pulse welding of dissimilar metals. Master Thesis, Universitaet Gent Broeckhove J, Willemsens L (2010) Experimental research on magnetic pulse welding of dissimilar metals. Master Thesis, Universitaet Gent
43.
go back to reference Raoelison RN, Rachik M, Buiron N et al (2012) Assessment of gap and charging voltage influence on mechanical behaviour of joints obtained by magnetic pulse welding. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 207–216 Raoelison RN, Rachik M, Buiron N et al (2012) Assessment of gap and charging voltage influence on mechanical behaviour of joints obtained by magnetic pulse welding. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 207–216
44.
go back to reference Sharafiev S, Wagner MF, Pabst C et al (2016) Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints. In: Lampke T, Wagner G, Wagner M (eds) Tagungsband zum 18. Werkstofftechnischen Kolloqium, p 294–298 Sharafiev S, Wagner MF, Pabst C et al (2016) Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints. In: Lampke T, Wagner G, Wagner M (eds) Tagungsband zum 18. Werkstofftechnischen Kolloqium, p 294–298
45.
go back to reference Ben-Artzy A, Stern A, Frage N et al (2008) Interface phenomena in aluminium-magnesium magnetic pulse welding. Sci Technol Weld Join 13(4):402–408CrossRef Ben-Artzy A, Stern A, Frage N et al (2008) Interface phenomena in aluminium-magnesium magnetic pulse welding. Sci Technol Weld Join 13(4):402–408CrossRef
47.
go back to reference Raoelison RN, Sapanathan T, Buiron N et al (2015) Magnetic pulse welding of Al/Al and Al/Cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J Manuf Process 20:112–127CrossRef Raoelison RN, Sapanathan T, Buiron N et al (2015) Magnetic pulse welding of Al/Al and Al/Cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J Manuf Process 20:112–127CrossRef
48.
go back to reference Goebel G, Kaspar J, Herrmannsdoerfer T et al (2010) Insights into intermetallic phases on pulse welded dissimilar metal joints. In: Babusci K, Daehn G, Marré M et al (eds) Proceedings of the 4th international conference on high speed forming 2010, p 127–136 Goebel G, Kaspar J, Herrmannsdoerfer T et al (2010) Insights into intermetallic phases on pulse welded dissimilar metal joints. In: Babusci K, Daehn G, Marré M et al (eds) Proceedings of the 4th international conference on high speed forming 2010, p 127–136
49.
go back to reference Tekkaya AE (2000) An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Ann CIRP 49(1):205–208CrossRef Tekkaya AE (2000) An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Ann CIRP 49(1):205–208CrossRef
51.
go back to reference Kore SD, Date PP, Kulkarni SV et al (2011) Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol 54:949–955CrossRef Kore SD, Date PP, Kulkarni SV et al (2011) Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol 54:949–955CrossRef
52.
go back to reference Bmax (2016) Magnetic pulse welding—the ultimate solution for driveshaft manufacturers. Accessed 2 March 2016 Bmax (2016) Magnetic pulse welding—the ultimate solution for driveshaft manufacturers. Accessed 2 March 2016
53.
go back to reference Hahn M, Weddeling C, Lueg-Althoff J et al (2016) Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol 230:131–142CrossRef Hahn M, Weddeling C, Lueg-Althoff J et al (2016) Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol 230:131–142CrossRef
54.
go back to reference DIN Deutsches Institut fuer Normung e.V. (1978) Testing of plated steels; determination of shearing strength between cladding material and base material in shearing test (DIN 50162) DIN Deutsches Institut fuer Normung e.V. (1978) Testing of plated steels; determination of shearing strength between cladding material and base material in shearing test (DIN 50162)
55.
go back to reference Barreiro P, Schulze V, Loehe D et al (2006) Strength of tubular joints made by electromagnetic compression at quasistatic and cyclic loading. In: Kleiner M (ed) Proceedings of the 2nd international conference: ICHSF 2006 Barreiro P, Schulze V, Loehe D et al (2006) Strength of tubular joints made by electromagnetic compression at quasistatic and cyclic loading. In: Kleiner M (ed) Proceedings of the 2nd international conference: ICHSF 2006
56.
go back to reference Fahrenwaldt HJ, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 5th edn. Springer Vieweg, Wiesbaden Fahrenwaldt HJ, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 5th edn. Springer Vieweg, Wiesbaden
57.
go back to reference Shaw RE (2002) Ultrasonic testing procedures, technician skills, and qualifications. J Mater Civ Eng 14(1):62–67CrossRef Shaw RE (2002) Ultrasonic testing procedures, technician skills, and qualifications. J Mater Civ Eng 14(1):62–67CrossRef
58.
go back to reference Hellier C (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill, New York Hellier C (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill, New York
59.
go back to reference Santos TG, Sorger G, Vilaça P et al (2014) A non-conventional technique for evaluating welded joints based on the electrical conductivity. Key Eng Mater 611–612:671–676CrossRef Santos TG, Sorger G, Vilaça P et al (2014) A non-conventional technique for evaluating welded joints based on the electrical conductivity. Key Eng Mater 611–612:671–676CrossRef
Metadata
Title
Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies
Authors
J. Bellmann
J. Lueg-Althoff
S. Schulze
S. Gies
E. Beyer
A. E. Tekkaya
Publication date
30-11-2016
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 4/2016
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-016-0162-5

Other articles of this Issue 4/2016

Advances in Manufacturing 4/2016 Go to the issue

Premium Partners