Skip to main content
Top

2013 | OriginalPaper | Chapter

Measurement Error in the Linear Dynamic Panel Data Model

Authors : Erik Meijer, Laura Spierdijk, Tom Wansbeek

Published in: ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study measurement error in the simplest dynamic panel data model without covariates. We start by investigating the first-order effects, on the most commonly used estimator, of the presence of measurement error. As was to be expected, measurement error renders this estimator inconsistent. However, with a slight adaptation, the estimator can be made consistent. This approach to consistent estimation is ad hoc and we next develop a systematic approach to consistent estimation. We show how to obtain the most efficient estimator from this class of consistent estimators. We illustrate our findings through an empirical example.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aigner, D.J., Hsiao, C., Kapteyn, A., Wansbeek, T.: Latent variable models in econometrics. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, vol. 2, pp. 1321–1393. North-Holland, Amsterdam (1984) Aigner, D.J., Hsiao, C., Kapteyn, A., Wansbeek, T.: Latent variable models in econometrics. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, vol. 2, pp. 1321–1393. North-Holland, Amsterdam (1984)
go back to reference Altonji, J.G., Siow, A.: Testing the response of consumption to income changes with (noisy) panel data. Q. J. Econ. 101, 293–328 (1987)CrossRef Altonji, J.G., Siow, A.: Testing the response of consumption to income changes with (noisy) panel data. Q. J. Econ. 101, 293–328 (1987)CrossRef
go back to reference Anderson, T.W., Hsiao, C.: Estimation of dynamic models with error components. J. Am. Stat. Assoc. 77, 598–606 (1981)MathSciNetCrossRef Anderson, T.W., Hsiao, C.: Estimation of dynamic models with error components. J. Am. Stat. Assoc. 77, 598–606 (1981)MathSciNetCrossRef
go back to reference Antman, F., McKenzie, D.: Poverty traps and nonlinear income dynamics with measurement error and individual heterogeneity. J. Dev. Stud. 43, 1057–1083 (2007)CrossRef Antman, F., McKenzie, D.: Poverty traps and nonlinear income dynamics with measurement error and individual heterogeneity. J. Dev. Stud. 43, 1057–1083 (2007)CrossRef
go back to reference Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991)MATHCrossRef Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991)MATHCrossRef
go back to reference Arellano, M., Bover, O.: Another look at the instrumental variable estimation of error-components models. J. Econom. 68, 29–51 (1995)MATHCrossRef Arellano, M., Bover, O.: Another look at the instrumental variable estimation of error-components models. J. Econom. 68, 29–51 (1995)MATHCrossRef
go back to reference Biørn, E.: The measurement error problem in dynamic panel data analysis: modeling and GMM estimation, Working paper, University of Oslo, 2012 Biørn, E.: The measurement error problem in dynamic panel data analysis: modeling and GMM estimation, Working paper, University of Oslo, 2012
go back to reference Blundell, R., Bond, S.: Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87, 115–143 (1998)MATHCrossRef Blundell, R., Bond, S.: Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87, 115–143 (1998)MATHCrossRef
go back to reference Bond, S., Hoeffler, A., Temple, J.: GMM estimation of empirical growth models, CEPR Working Paper 3048, 2001 Bond, S., Hoeffler, A., Temple, J.: GMM estimation of empirical growth models, CEPR Working Paper 3048, 2001
go back to reference Buonaccorsi, J.: Measurement Error, Models, Methods, and Applications. Chapman & Hall, Boca Raton (2010)MATHCrossRef Buonaccorsi, J.: Measurement Error, Models, Methods, and Applications. Chapman & Hall, Boca Raton (2010)MATHCrossRef
go back to reference Chen, J., Ni, S., Podgursky, M.: Estimating dynamic panel data models with measurement errors with an application to school evaluation based on student test scores. In: Proceedings of the 2008 Meeting of the American Statistical Association, pp. 951–957 (2008) Chen, J., Ni, S., Podgursky, M.: Estimating dynamic panel data models with measurement errors with an application to school evaluation based on student test scores. In: Proceedings of the 2008 Meeting of the American Statistical Association, pp. 951–957 (2008)
go back to reference Fan, Z., Sutradhar, B.C., Rao, R.P.: Bias corrected generalized method of moments and generalized quasi-likelihood inferences in linear models for panel data with measurement error. Sankhyā B. 74, 126–148 (2012)MATHCrossRef Fan, Z., Sutradhar, B.C., Rao, R.P.: Bias corrected generalized method of moments and generalized quasi-likelihood inferences in linear models for panel data with measurement error. Sankhyā B. 74, 126–148 (2012)MATHCrossRef
go back to reference Harris, M.N., Mátyás, L.: Performance of the operational Wansbeek-Bekker estimator for dynamic panel data models. Appl. Econ. Lett. 7, 149–153 (2000)CrossRef Harris, M.N., Mátyás, L.: Performance of the operational Wansbeek-Bekker estimator for dynamic panel data models. Appl. Econ. Lett. 7, 149–153 (2000)CrossRef
go back to reference Juster, F.T., Suzman, R.: An overview of the Health and Retirement Study. J. Hum. Resour. 30, S7–S56 (1995)CrossRef Juster, F.T., Suzman, R.: An overview of the Health and Retirement Study. J. Hum. Resour. 30, S7–S56 (1995)CrossRef
go back to reference Komunjer, I., Ng, S.: Measurement errors in dynamic models, Working paper, 2011 Komunjer, I., Ng, S.: Measurement errors in dynamic models, Working paper, 2011
go back to reference Magnus, J.R., Neudecker, H.: Symmetry, 0–1 matrices and Jacobians: A review. Econom. Theory 2, 157–190 (1986)CrossRef Magnus, J.R., Neudecker, H.: Symmetry, 0–1 matrices and Jacobians: A review. Econom. Theory 2, 157–190 (1986)CrossRef
go back to reference Meijer, E., Spierdijk, L., Wansbeek, T.J.: Point and set identification in linear panel data models with measurement error. Working Paper WR-941, RAND Corporation, Santa Monica, 2012 Meijer, E., Spierdijk, L., Wansbeek, T.J.: Point and set identification in linear panel data models with measurement error. Working Paper WR-941, RAND Corporation, Santa Monica, 2012
go back to reference St. Clair, P., et al.: RAND HRS Data Documentation, Version L. RAND Corporation, Santa Monica (2011) St. Clair, P., et al.: RAND HRS Data Documentation, Version L. RAND Corporation, Santa Monica (2011)
go back to reference Wansbeek, T.J., Bekker, P.A.: On IV, GMM and ML in a dynamic panel data model. Econ. Lett. 51, 145–152 (1996)MATHCrossRef Wansbeek, T.J., Bekker, P.A.: On IV, GMM and ML in a dynamic panel data model. Econ. Lett. 51, 145–152 (1996)MATHCrossRef
go back to reference Wansbeek, T.J., Kapteyn, A.: Simple estimators for dynamic panel data models with errors in the variables. In: Bewley, R., Van Hoa, T. (eds.) Contributions to Consumer Demand and Econometrics. McMillan, London (1992) Wansbeek, T.J., Kapteyn, A.: Simple estimators for dynamic panel data models with errors in the variables. In: Bewley, R., Van Hoa, T. (eds.) Contributions to Consumer Demand and Econometrics. McMillan, London (1992)
go back to reference Wansbeek, T.J., Meijer, E.: Measurement Error and Latent Variables in Econometrics. North-Holland, Amsterdam (2000)MATH Wansbeek, T.J., Meijer, E.: Measurement Error and Latent Variables in Econometrics. North-Holland, Amsterdam (2000)MATH
Metadata
Title
Measurement Error in the Linear Dynamic Panel Data Model
Authors
Erik Meijer
Laura Spierdijk
Tom Wansbeek
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6871-4_4

Premium Partner