Skip to main content
Top
Published in: Measurement Techniques 4/2021

05-10-2021 | THERMOPHYSICAL MEASUREMENTS

Measurement of Foam-Concrete Temperature during Heat Treatment with Microwave Radiation

Authors: A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, V. P. Simonov, S. A. Khritkin

Published in: Measurement Techniques | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper addresses the high-priority goal of reducing the energy cost of heat-treating foam concrete slabs. We show that this problem is best solved using microwaves as a heat source. We discuss the main advantages of microwave curing over traditional techniques for curing foam concrete slabs, and develop a design for a microwave foam concrete slab curing unit. The microwave radiation sources used in the curing unit transmit the microwave radiation from rectangular waveguide openings used as radiating antennas. The temperature distribution on the surface of the foam concrete slab was calculated by the Huygens–Kirchhoff method; while the temperature distribution as a function of thickness within the foam concrete slab was calculated using the long-loaded-line method. We also propose a technique for measuring the temperature distribution within a foam concrete slab. We also describe the results from theoretical and experimental studies of the temperature distribution over the surface and through the cross-section of a vertical foam concrete slab 1500 mm wide, 1000 mm high, and 200 mm thick, with a density of 1000 kg/m3, and an electromagnetic field oscillation frequency of 2450 MHz. The experimental results indicated that microwave radiation was extremely efficient for curing foam concrete slabs. Microwaves can be used for curing products made with concrete, reinforced concrete, and polymer composite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. N. Gindin and A. V. Khitrov, “Process line for production of small wall blocks made from autoclaved foam concrete based on bulk raw materials,” Stroit. Mater., No. 6, 4–5 (2003). M. N. Gindin and A. V. Khitrov, “Process line for production of small wall blocks made from autoclaved foam concrete based on bulk raw materials,” Stroit. Mater., No. 6, 4–5 (2003).
2.
go back to reference L. A. Malinina and V. G. Batrakov, “Concrete science: Present and future,” Beton i Zhelezobeton, No. 1, 2–6 (2003). L. A. Malinina and V. G. Batrakov, “Concrete science: Present and future,” Beton i Zhelezobeton, No. 1, 2–6 (2003).
3.
go back to reference S. N. Leonidovich, D. V. Sviridov, G. A. Shchukin, et al., “Compensation for foam concrete shrinkage,” Stroit. Mater., No. 3, 3–7 (2015). S. N. Leonidovich, D. V. Sviridov, G. A. Shchukin, et al., “Compensation for foam concrete shrinkage,” Stroit. Mater., No. 3, 3–7 (2015).
4.
go back to reference E. R. Subkhankulova, V. V. Kondrat’ev, N. N. Morozova, and V. G. Khozin, “Crack formation in foam concrete with density 200 kg/m3,” Stroit. Mater., No. 1, 46–47 (2006). E. R. Subkhankulova, V. V. Kondrat’ev, N. N. Morozova, and V. G. Khozin, “Crack formation in foam concrete with density 200 kg/m3,” Stroit. Mater., No. 1, 46–47 (2006).
5.
go back to reference S. R. Ruzhinskiy, A. A. Portik, and A. V. Savinykh, A Complete Guide to Foam Concrete, Stroi Beton, St. Petersburg (2006). S. R. Ruzhinskiy, A. A. Portik, and A. V. Savinykh, A Complete Guide to Foam Concrete, Stroi Beton, St. Petersburg (2006).
6.
go back to reference L. D. Shakhova, Foam Concrete Technology. Theory and Practical Applications: Monograph, Izd. Assotsiatsii Stroitiel’nykh Vuzov, Moscow (2010). L. D. Shakhova, Foam Concrete Technology. Theory and Practical Applications: Monograph, Izd. Assotsiatsii Stroitiel’nykh Vuzov, Moscow (2010).
7.
go back to reference I. B. Udachkin, “Key issues in the development of foam concrete production,” Stroit. Mater., No. 3, 8–9 (2002). I. B. Udachkin, “Key issues in the development of foam concrete production,” Stroit. Mater., No. 3, 8–9 (2002).
8.
go back to reference A. A. Akhundov and V. I. Udachkin, “Prospects for improvements to foam concrete technology,” Stroit. Mater., No. 3, 10–11 (2002). A. A. Akhundov and V. I. Udachkin, “Prospects for improvements to foam concrete technology,” Stroit. Mater., No. 3, 10–11 (2002).
9.
go back to reference V. N. Nefedov and A. V. Mamontov, “Microwave heat treatment of concrete,” in: Proc. Int. Conf. on Innovative Information Technologies, Prague, 2013, FGAU GNII ITT Informika, Moscow (2013), pp. 258–264. V. N. Nefedov and A. V. Mamontov, “Microwave heat treatment of concrete,” in: Proc. Int. Conf. on Innovative Information Technologies, Prague, 2013, FGAU GNII ITT Informika, Moscow (2013), pp. 258–264.
10.
go back to reference V. N. Nefedov and A. V. Mamontov, “Use of microwave radiation for heat treatment of concrete,” in: Proc. Int. Conf. on Microwave Equipment and Telecommunications Technologies, Sevastopol (2015), pp. 944–945. V. N. Nefedov and A. V. Mamontov, “Use of microwave radiation for heat treatment of concrete,” in: Proc. Int. Conf. on Microwave Equipment and Telecommunications Technologies, Sevastopol (2015), pp. 944–945.
11.
go back to reference A. V. Mamontov, V. N. Nefedov, V. P. Simonov, and A. A. Chechetkin, “Microwave method of curing of concrete,” T-Comm: Telecom. Transp., 10, 79–82 (2016). A. V. Mamontov, V. N. Nefedov, V. P. Simonov, and A. A. Chechetkin, “Microwave method of curing of concrete,” T-Comm: Telecom. Transp., 10, 79–82 (2016).
12.
go back to reference B. S. Revenko, “Production of cellular concrete using microwave technology,” Molodoi Uchenyi, No. 14, 118–119 (2017). B. S. Revenko, “Production of cellular concrete using microwave technology,” Molodoi Uchenyi, No. 14, 118–119 (2017).
13.
go back to reference Yu. S. Arkhangel’skiy, Devices for RF Dielectric Heating: Textbook, Saratov. Gos. Tekhn. Univ., Saratov (2010). Yu. S. Arkhangel’skiy, Devices for RF Dielectric Heating: Textbook, Saratov. Gos. Tekhn. Univ., Saratov (2010).
14.
go back to reference V. N. Nefedov, A. V. Mamontov, and V. P. Simonov, “Measurements of the temperature of the walls of composite pipes during thermal processing in travelling-wave microwave systems,” Izmer. Tekhn., No. 8, 45–48 (2016). V. N. Nefedov, A. V. Mamontov, and V. P. Simonov, “Measurements of the temperature of the walls of composite pipes during thermal processing in travelling-wave microwave systems,” Izmer. Tekhn., No. 8, 45–48 (2016).
15.
go back to reference A. V. Mamontov, S. V. Reznik, V. N. Nefedov, and T. A. Guzeva, “Techniques for reducing the level of sideband emissions from microwave irradiation devices used in heat treatment of materials,” Tekhnol. Elektromagn. Sovmest., No. 3, 24–28 (2013). A. V. Mamontov, S. V. Reznik, V. N. Nefedov, and T. A. Guzeva, “Techniques for reducing the level of sideband emissions from microwave irradiation devices used in heat treatment of materials,” Tekhnol. Elektromagn. Sovmest., No. 3, 24–28 (2013).
Metadata
Title
Measurement of Foam-Concrete Temperature during Heat Treatment with Microwave Radiation
Authors
A. V. Mamontov
V. N. Nefedov
I. V. Nazarov
V. P. Simonov
S. A. Khritkin
Publication date
05-10-2021
Publisher
Springer US
Published in
Measurement Techniques / Issue 4/2021
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-021-01934-0

Other articles of this Issue 4/2021

Measurement Techniques 4/2021 Go to the issue