Skip to main content
Top

2024 | OriginalPaper | Chapter

Measuring Bias in Generated Text Using Language Models—GPT-2 and BERT

Authors : Fozilatunnesa Masuma, Partha Chakraborty, Al-Amin-Ul Islam, Prince Chandra Talukder, Proshanta Roy, Mohammad Abu Yousuf

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Natural Language Processing (NLP), a language model is a probabilistic statistical model that estimates the likelihood that a particular sequence of words will appear in a sentence based on the words that came before it. In our experiment, text prompts for evaluating bias were generated using the BERT and GPT-2 language models. Sentiment, toxicity, and gender polarity are the bias measures that we have added in order to measure biases from numerous perspectives. During fine-tuning BERT model, we have achieved 91.48% accuracy on multilabel toxic comment classification. Later, this fine-tuned pretrained model is used for generating text using BOLD dataset prompts. Our work shows a greater percentage of the texts produced by GPT-2 than those produced by BERT which were labeled as toxic. Similar to how it did in the religious ideology sector, BERT's communism prompt resulted in a toxic text. Compared to BERT, GPT-2 produced writings that were more polarized in terms of sentiment, toxicity, and regard.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT:A lite bert for self-supervised learning of language representations. In: International Conference on Learning Representations (2020) Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT:A lite bert for self-supervised learning of language representations. In: International Conference on Learning Representations (2020)
2.
go back to reference Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1) (2019) Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1) (2019)
3.
go back to reference Dhamala, J., Sun, T., Kumar, V., Krishna, S., Pruksachatkun, Y., Chang, K. W., & Gupta, R.: BOLD: dataset and metrics for measuring biases in open-ended language generation. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2021) Dhamala, J., Sun, T., Kumar, V., Krishna, S., Pruksachatkun, Y., Chang, K. W., & Gupta, R.: BOLD: dataset and metrics for measuring biases in open-ended language generation. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2021)
4.
go back to reference Wang, A., Cho, K.: BERT has a mouth, and it must speak: BERT as a Markov Random field language model. In: Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation, pp, 30–36 (2019) Wang, A., Cho, K.: BERT has a mouth, and it must speak: BERT as a Markov Random field language model. In: Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation, pp, 30–36 (2019)
5.
go back to reference Bender, E.M., Friedman, B.: Data statements for natural language processing: toward mitigating system bias and enabling better science. Trans. Assoc. Comput. Linguist. (TACL) 6, 587–604 (2018)CrossRef Bender, E.M., Friedman, B.: Data statements for natural language processing: toward mitigating system bias and enabling better science. Trans. Assoc. Comput. Linguist. (TACL) 6, 587–604 (2018)CrossRef
6.
go back to reference Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China. Association for Computational Linguistics (2019) Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China. Association for Computational Linguistics (2019)
7.
go back to reference Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Gender bias in coreference resolution: evaluation and debiasing methods. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 15–20, New Orleans, Louisiana. Association for Computational Linguistics (2018) Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Gender bias in coreference resolution: evaluation and debiasing methods. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 15–20, New Orleans, Louisiana. Association for Computational Linguistics (2018)
8.
go back to reference Nangia, N., Vania, C., Bhalerao, R., Bowman, S.R.: CrowSPairs: a challenge dataset for measuring social biases in masked language models. In EMNLP (2020) Nangia, N., Vania, C., Bhalerao, R., Bowman, S.R.: CrowSPairs: a challenge dataset for measuring social biases in masked language models. In EMNLP (2020)
9.
go back to reference Bolukbasi, T., Chang, K.-W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, pp. 4349–4357 Bolukbasi, T., Chang, K.-W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, pp. 4349–4357
10.
go back to reference Sheng, E., Chang, K.-W., Natarajan, P., Peng, N.: The woman worked as a babysitter: on biases in language generation. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLPIJCNLP), pp. 3398–3403 (2019) Sheng, E., Chang, K.-W., Natarajan, P., Peng, N.: The woman worked as a babysitter: on biases in language generation. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLPIJCNLP), pp. 3398–3403 (2019)
11.
go back to reference Nadeem, M., Bethke, A., Reddy, S.: StereoSet: measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456 (2020) Nadeem, M., Bethke, A., Reddy, S.: StereoSet: measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:​2004.​09456 (2020)
12.
go back to reference Guo, W., Caliskan, A.: Detecting emergent intersectional biases: contextualized word embeddings contain a distribution of human-like biases. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21). Association for Computing Machinery, New York, NY, USA, pp. 122–133 (2021) Guo, W., Caliskan, A.: Detecting emergent intersectional biases: contextualized word embeddings contain a distribution of human-like biases. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21). Association for Computing Machinery, New York, NY, USA, pp. 122–133 (2021)
13.
go back to reference Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1, 8–9 (2019) Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1, 8–9 (2019)
14.
go back to reference Munikar, M., Shakya, S., Shrestha, A.: Fine-grained sentiment classification using BERT.In: 2019 Artificial Intelligence for Transforming Business and Society (AITB). Vol. 1, IEEE (2019) Munikar, M., Shakya, S., Shrestha, A.: Fine-grained sentiment classification using BERT.In: 2019 Artificial Intelligence for Transforming Business and Society (AITB). Vol. 1, IEEE (2019)
15.
go back to reference Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M. and Davison, J., Shleifer, S., von Platen, P., Clara Ma, Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., Rush, A.M.: HuggingFace’s transformers: state-of-the-art natural language processing. In: EMNLP (2020) Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M. and Davison, J., Shleifer, S., von Platen, P., Clara Ma, Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., Rush, A.M.: HuggingFace’s transformers: state-of-the-art natural language processing. In: EMNLP (2020)
16.
go back to reference Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S.: Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015) Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S.: Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015)
17.
go back to reference Gilbert, C.: Vader: a parsimonious rule-based model for sentiment analysis of social media text (2014) Gilbert, C.: Vader: a parsimonious rule-based model for sentiment analysis of social media text (2014)
18.
go back to reference Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Training language models to follow instructions with human feedback (2022). arXiv:2203.02155 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Training language models to follow instructions with human feedback (2022). arXiv:​2203.​02155
19.
go back to reference Abdollah Pour, M.M., Farinneya, P., Toroghi, A., Korikov, A., Pesaranghader, A., Sajed, T., Bharadwaj, M., Mavrin, B., Sanner, S.: Self-supervised contrastive BERT fine-tuning for fusion-based reviewed-item retrieval (2023). arXiv preprint arXiv:2308.00762. Abdollah Pour, M.M., Farinneya, P., Toroghi, A., Korikov, A., Pesaranghader, A., Sajed, T., Bharadwaj, M., Mavrin, B., Sanner, S.: Self-supervised contrastive BERT fine-tuning for fusion-based reviewed-item retrieval (2023). arXiv preprint arXiv:​2308.​00762.
Metadata
Title
Measuring Bias in Generated Text Using Language Models—GPT-2 and BERT
Authors
Fozilatunnesa Masuma
Partha Chakraborty
Al-Amin-Ul Islam
Prince Chandra Talukder
Proshanta Roy
Mohammad Abu Yousuf
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_39