Skip to main content
Top
Published in: Fire Technology 3/2011

01-07-2011

Measuring Radiation Heat Fluxes from a Jet Fire Using a Lumped Capacitance Model

Author: Peter S. Cumber

Published in: Fire Technology | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an experimental methodology for measuring the incident radiation heat flux distribution surrounding a jet fire. The methodology uses a line of surface thermocouples attached to a steel bar. The thermocouples measure the temperature time history of the steel bar in response to an imposed incident radiation heat flux. The theoretical basis of the methodology is an energy balance for any point on the steel bar. The energy balance is formulated as a lumped capacitance model. All of the assumptions in the theory are shown to be valid and the accuracy of the experimental methodology demonstrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jeng SM, Chen LD, Faeth GM (1982) The structure of buoyant methane and propane diffusion flames. In: Nineteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 349–358 Jeng SM, Chen LD, Faeth GM (1982) The structure of buoyant methane and propane diffusion flames. In: Nineteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 349–358
2.
go back to reference Jeng, S.M., Lai, M.C. and Faeth G.M., Nonluminous radiation in turbulent buoyant axisymmetric flames, Combust Sci and Tech., 1984, 40, 41-53.CrossRef Jeng, S.M., Lai, M.C. and Faeth G.M., Nonluminous radiation in turbulent buoyant axisymmetric flames, Combust Sci and Tech., 1984, 40, 41-53.CrossRef
3.
go back to reference Fairweather, M., Jones, W.P. and Lindstedt, R.P., Predictions of Radiative Heat Transfer from a Turbulent Reacting Jet in a Cross-Wind, Combust Flame, 1992, 89, 45-63.CrossRef Fairweather, M., Jones, W.P. and Lindstedt, R.P., Predictions of Radiative Heat Transfer from a Turbulent Reacting Jet in a Cross-Wind, Combust Flame, 1992, 89, 45-63.CrossRef
4.
go back to reference Onokpe O. and Cumber P.S., (2009) Modelling lifted hydrogen jet fires using the boundary layer equations, J. Applied Thermal Engineering, 29: 1383-1390.CrossRef Onokpe O. and Cumber P.S., (2009) Modelling lifted hydrogen jet fires using the boundary layer equations, J. Applied Thermal Engineering, 29: 1383-1390.CrossRef
5.
go back to reference Cumber PS. and Spearpoint M. A computational flame length methodology for propane jet fires, Fire Safety Journal, 2007, 41, 215-228.CrossRef Cumber PS. and Spearpoint M. A computational flame length methodology for propane jet fires, Fire Safety Journal, 2007, 41, 215-228.CrossRef
6.
go back to reference Cumber P.S., (2009) Accelerating ray convergence in jet fire radiation modelling using Sobol sequences, Int. J. Thermal Science, 48: 1338-1347.CrossRef Cumber P.S., (2009) Accelerating ray convergence in jet fire radiation modelling using Sobol sequences, Int. J. Thermal Science, 48: 1338-1347.CrossRef
7.
go back to reference Heat flux transducers and infrared radiometers for the direct measurement of heat transfer rates. Medtherm Corporation. Heat flux transducers and infrared radiometers for the direct measurement of heat transfer rates. Medtherm Corporation.
8.
go back to reference Cumber P.S. and Fairweather M., (2005) Evaluation of flame emission models combined with the discrete transfer method for combustion system simulation, Int J of Heat and Mass Transfer, 48: 5221-5239.CrossRefMATH Cumber P.S. and Fairweather M., (2005) Evaluation of flame emission models combined with the discrete transfer method for combustion system simulation, Int J of Heat and Mass Transfer, 48: 5221-5239.CrossRefMATH
9.
go back to reference Ingason, H. and de Ris, J., Flame heat transfer in storage geometries, Fire Safety Journal, 1998, 31, 39-60.CrossRef Ingason, H. and de Ris, J., Flame heat transfer in storage geometries, Fire Safety Journal, 1998, 31, 39-60.CrossRef
10.
go back to reference Blanchat TK, Humphries LL, Gill W (2000) Sandia heat flux gauge thermal response and uncertainty models. Sandia National Laboratories Report SAND2000-1111 Blanchat TK, Humphries LL, Gill W (2000) Sandia heat flux gauge thermal response and uncertainty models. Sandia National Laboratories Report SAND2000-1111
11.
go back to reference Ingason, H. and Wickstrom, U., Measuring incident radiant heat flux using the plate thermometer, Fire Safety Journal, 2007, 42, 161-166.CrossRef Ingason, H. and Wickstrom, U., Measuring incident radiant heat flux using the plate thermometer, Fire Safety Journal, 2007, 42, 161-166.CrossRef
12.
go back to reference Nakos JT (2005) Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires. Sandia National Laboratories Report SAND2005-7144 Nakos JT (2005) Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires. Sandia National Laboratories Report SAND2005-7144
13.
go back to reference Siegel, R. and Howell, J.R., Thermal Radiation Heat Transfer, 3rd Edition, Hemisphere Publishing Corporation, 1992. Siegel, R. and Howell, J.R., Thermal Radiation Heat Transfer, 3rd Edition, Hemisphere Publishing Corporation, 1992.
14.
go back to reference Moran MJ, Shapiro HN, Munson BR, DeWitt DP (2003) Introduction to thermal systems engineering. Wiley, New York Moran MJ, Shapiro HN, Munson BR, DeWitt DP (2003) Introduction to thermal systems engineering. Wiley, New York
15.
go back to reference Cumber P.S. and Passarelli K.S., (2007) The numerical analysis of precision quartz oscillator simulation – An area corrected flux finite volume scheme, J Num Heat Transfer Part B. 52: 201-230.CrossRef Cumber P.S. and Passarelli K.S., (2007) The numerical analysis of precision quartz oscillator simulation – An area corrected flux finite volume scheme, J Num Heat Transfer Part B. 52: 201-230.CrossRef
16.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, New York Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, New York
17.
go back to reference Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation turbulence model, Int. J. Heat Mass Transfer, 1972, 15, 301-314.CrossRef Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation turbulence model, Int. J. Heat Mass Transfer, 1972, 15, 301-314.CrossRef
18.
go back to reference Pope, S.B., An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J, 1978, 16, 279-281.CrossRef Pope, S.B., An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J, 1978, 16, 279-281.CrossRef
19.
go back to reference Moss JB, Stewart CD, Syed K (1988) Flow field modelling of soot formation at elevated pressure. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 413–423. Moss JB, Stewart CD, Syed K (1988) Flow field modelling of soot formation at elevated pressure. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 413–423.
20.
go back to reference Fairweather M, Jones WP, Ledin S, Lindstedt P (1992) Predictions of soot formation in turbulent non-premixed propane flames. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1067–1074 Fairweather M, Jones WP, Ledin S, Lindstedt P (1992) Predictions of soot formation in turbulent non-premixed propane flames. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1067–1074
21.
go back to reference Cumber P.S. and Spearpoint M., (2006) Modelling lifted methane jet fires using the boundary layer equations, J Num Heat Transfer Part B Fundamentals, 49: 239-258.CrossRef Cumber P.S. and Spearpoint M., (2006) Modelling lifted methane jet fires using the boundary layer equations, J Num Heat Transfer Part B Fundamentals, 49: 239-258.CrossRef
22.
go back to reference Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, vol 14, 3rd edn, J Phys Chem Ref Data Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, vol 14, 3rd edn, J Phys Chem Ref Data
23.
go back to reference Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: Eighteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1405–1414. Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: Eighteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1405–1414.
24.
go back to reference Cumber P.S., (1995) Improvements to the discrete transfer method of calculating radiative heat transfer, Int J of Heat and Mass Transfer, 38: 2251-2258.CrossRefMATH Cumber P.S., (1995) Improvements to the discrete transfer method of calculating radiative heat transfer, Int J of Heat and Mass Transfer, 38: 2251-2258.CrossRefMATH
25.
go back to reference Cumber P.S., (2000) Ray effect mitigation in jet fire radiation modelling, Int J of Heat and Mass Transfer, 43: 935-943.CrossRefMATH Cumber P.S., (2000) Ray effect mitigation in jet fire radiation modelling, Int J of Heat and Mass Transfer, 43: 935-943.CrossRefMATH
26.
go back to reference Grosshandler, W.L., Radiative heat transfer in nonhomogeneous gases: A simplified approach, Int. J of Heat and Mass Transfer, 1980, 23, 1447-1459.CrossRef Grosshandler, W.L., Radiative heat transfer in nonhomogeneous gases: A simplified approach, Int. J of Heat and Mass Transfer, 1980, 23, 1447-1459.CrossRef
27.
go back to reference Cumber P.S., Fairweather M., and Ledin S., Application of wide band radiation models to non-homogeneous combustion systems, Int. J. Heat Mass Transfer, 41, (1998), 1573-1584.CrossRef Cumber P.S., Fairweather M., and Ledin S., Application of wide band radiation models to non-homogeneous combustion systems, Int. J. Heat Mass Transfer, 41, (1998), 1573-1584.CrossRef
Metadata
Title
Measuring Radiation Heat Fluxes from a Jet Fire Using a Lumped Capacitance Model
Author
Peter S. Cumber
Publication date
01-07-2011
Publisher
Springer US
Published in
Fire Technology / Issue 3/2011
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-010-0182-9

Other articles of this Issue 3/2011

Fire Technology 3/2011 Go to the issue