Skip to main content
Top

2019 | OriginalPaper | Chapter

Measuring the Angle of Hallux Valgus Using Segmentation of Bones on X-Ray Images

Authors : Konrad Kwolek, Henryk Liszka, Bogdan Kwolek, Artur Gądek

Published in: Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hallux valgus is a common feet problem. A hallux valgus deformity is when there is medial deviation of the first metatarsal and lateral deviation of the great toe. In this work, we introduce an algorithm for automatic recognition of hallux valgus on X-ray images with feet. The bones are segmented on the basis of U-Net convolutional neural network. The neural network has been trained on thirty manually segmented images by an orthopedist. We present both qualitative and quantitative segmentation results on ten test images. We present algorithms for great toe extraction and hallux valgus angle (HVA) estimation. The HVA is estimated as the angle between two lines fitted to big toe skeleton. We compare results that were obtained manually, by computer-assisted programs that are used by radiologists, and by the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, pp. 178–183. AAAI Press (1986) Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, pp. 178–183. AAAI Press (1986)
2.
go back to reference Aizenberg, I., Aizenberg, N., Vandewalle, J.: Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Kluwer Academic Publishers, Norwell (2000)CrossRef Aizenberg, I., Aizenberg, N., Vandewalle, J.: Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Kluwer Academic Publishers, Norwell (2000)CrossRef
3.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
4.
go back to reference Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)CrossRef Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)CrossRef
5.
go back to reference Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015) Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)
6.
go back to reference Fogel, A., Kvedar, J.: Artificial intelligence powers digital medicine. NPJ Digit. Med. 1(1), 5 (2018)CrossRef Fogel, A., Kvedar, J.: Artificial intelligence powers digital medicine. NPJ Digit. Med. 1(1), 5 (2018)CrossRef
7.
go back to reference Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019)CrossRef Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019)CrossRef
8.
go back to reference Mayo, R.C., Leung, J.: Artificial intelligence and deep learning - radiology’s Next frontier? Clin. Imaging 49, 87–88 (2018)CrossRef Mayo, R.C., Leung, J.: Artificial intelligence and deep learning - radiology’s Next frontier? Clin. Imaging 49, 87–88 (2018)CrossRef
9.
go back to reference Fazal, M.I., Patel, M.E., Tye, J., Gupta, Y.: The past, present and future role of artificial intelligence in imaging. Eur. J. Radiol. 105, 246–250 (2018)CrossRef Fazal, M.I., Patel, M.E., Tye, J., Gupta, Y.: The past, present and future role of artificial intelligence in imaging. Eur. J. Radiol. 105, 246–250 (2018)CrossRef
10.
go back to reference Liew, C.: The future of radiology augmented with artificial intelligence: a strategy for success. Eur. J. Radiol. 102, 152–156 (2018)CrossRef Liew, C.: The future of radiology augmented with artificial intelligence: a strategy for success. Eur. J. Radiol. 102, 152–156 (2018)CrossRef
11.
go back to reference Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1) (2018) Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1) (2018)
12.
go back to reference Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-Rays with deep learning. CoRR abs/1711.05225 (2017) Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-Rays with deep learning. CoRR abs/1711.05225 (2017)
13.
go back to reference Islam, J., Zhang, Y.: Towards robust lung segmentation in chest radiographs with deep learning. CoRR abs/1811.12638 (2018) Islam, J., Zhang, Y.: Towards robust lung segmentation in chest radiographs with deep learning. CoRR abs/1811.12638 (2018)
15.
go back to reference Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8, 1 (2018) CrossRef Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8, 1 (2018) CrossRef
16.
go back to reference Wu, J., Mahfouz, M.R.: Robust X-ray image segmentation by spectral clustering and active shape model. J. Med. Imaging 3 (2016)CrossRef Wu, J., Mahfouz, M.R.: Robust X-ray image segmentation by spectral clustering and active shape model. J. Med. Imaging 3 (2016)CrossRef
17.
go back to reference Stolojescu-Crisan, C., Stefan, H.: An interactive X-ray image segmentation technique for bone extraction. In: International Work-Conference on Bioinformatics and Biomedical Engineering, pp. 1164–1171 (2014) Stolojescu-Crisan, C., Stefan, H.: An interactive X-ray image segmentation technique for bone extraction. In: International Work-Conference on Bioinformatics and Biomedical Engineering, pp. 1164–1171 (2014)
18.
go back to reference Mohammadi, H.M., de Guise, J.A.: Enhanced X-ray image segmentation method using prior shape. IET Comput. Vision 11(2), 145–152 (2017)CrossRef Mohammadi, H.M., de Guise, J.A.: Enhanced X-ray image segmentation method using prior shape. IET Comput. Vision 11(2), 145–152 (2017)CrossRef
19.
go back to reference Liszka, H., Gądek, A.: Results of scarf osteotomy without implant fixation in the treatment of hallux valgus. Foot Ankle Int. 39(11), 1320–1327 (2018)CrossRef Liszka, H., Gądek, A.: Results of scarf osteotomy without implant fixation in the treatment of hallux valgus. Foot Ankle Int. 39(11), 1320–1327 (2018)CrossRef
20.
go back to reference Dinato, M., de Faria Freitas, M., Milano, C., Valloto, E., Ninomiya, A.F., Pagnano, R.G.: Reliability of two smartphone applications for radiographic measurements of hallux valgus angles. J. Foot Ankle Surg. 56(2), 230–233 (2017)CrossRef Dinato, M., de Faria Freitas, M., Milano, C., Valloto, E., Ninomiya, A.F., Pagnano, R.G.: Reliability of two smartphone applications for radiographic measurements of hallux valgus angles. J. Foot Ankle Surg. 56(2), 230–233 (2017)CrossRef
21.
go back to reference Srivastava, S., Chockalingam, N., Fakhri, T.E.: Radiographic measurements of hallux angles: a review of current techniques. Foot 20(1), 27–31 (2010)CrossRef Srivastava, S., Chockalingam, N., Fakhri, T.E.: Radiographic measurements of hallux angles: a review of current techniques. Foot 20(1), 27–31 (2010)CrossRef
22.
go back to reference Heineman, N., Chhabra, A., Zhang, L., Dessouky, R., Wukich, D.: Point vs. traditional method evaluation of hallux valgus: interreader reliability and intermethod performance using X-ray and MRI. Skeletal Radiol. 48(2), 251–257 (2019)CrossRef Heineman, N., Chhabra, A., Zhang, L., Dessouky, R., Wukich, D.: Point vs. traditional method evaluation of hallux valgus: interreader reliability and intermethod performance using X-ray and MRI. Skeletal Radiol. 48(2), 251–257 (2019)CrossRef
23.
go back to reference Yang, W., et al.: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med. Image Anal. 35, 421–433 (2017)CrossRef Yang, W., et al.: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med. Image Anal. 35, 421–433 (2017)CrossRef
24.
go back to reference Olczak, J., et al.: Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 88(6), 581–586 (2017)CrossRef Olczak, J., et al.: Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 88(6), 581–586 (2017)CrossRef
25.
go back to reference Wülker, N., Mittag, F.: The treatment of hallux valgus. Deutsches Ärzteblatt Int. 109(49), 857–868 (2012) Wülker, N., Mittag, F.: The treatment of hallux valgus. Deutsches Ärzteblatt Int. 109(49), 857–868 (2012)
26.
go back to reference Garrow, A.P., Papageorgiou, A., Silman, A.J., Thomas, E., Jayson, M.I.V., Macfarlane, G.J.: The grading of hallux valgus. The Manchester scale. J. Am. Podiatr. Med. Assoc. 91(2), 74–78 (2001)CrossRef Garrow, A.P., Papageorgiou, A., Silman, A.J., Thomas, E., Jayson, M.I.V., Macfarlane, G.J.: The grading of hallux valgus. The Manchester scale. J. Am. Podiatr. Med. Assoc. 91(2), 74–78 (2001)CrossRef
27.
go back to reference Lee, K.M., Ahn, S., Chung, C.Y., Sung, K., Park, M.: Reliability and relationship of radiographic measurements in hallux valgus. Clin. Orthop. Relat. Res. 470(9), 2613–2621 (2012)CrossRef Lee, K.M., Ahn, S., Chung, C.Y., Sung, K., Park, M.: Reliability and relationship of radiographic measurements in hallux valgus. Clin. Orthop. Relat. Res. 470(9), 2613–2621 (2012)CrossRef
28.
go back to reference Schneider, W., Csepan, R., Knahr, K.: Reproducibility of the radiographic metatarsophalangeal angle in hallux surgery. J. Bone Joint Surg. Am. 85–A, 494–499 (2003)CrossRef Schneider, W., Csepan, R., Knahr, K.: Reproducibility of the radiographic metatarsophalangeal angle in hallux surgery. J. Bone Joint Surg. Am. 85–A, 494–499 (2003)CrossRef
29.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Metadata
Title
Measuring the Angle of Hallux Valgus Using Segmentation of Bones on X-Ray Images
Authors
Konrad Kwolek
Henryk Liszka
Bogdan Kwolek
Artur Gądek
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30493-5_32

Premium Partner