Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Mechanical Behavior and the Strengthening Mechanism of LSP-Induced Gradient Microstructure in Metal Materials

Authors : Liucheng Zhou, Weifeng He

Published in: Gradient Microstructure in Laser Shock Peened Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In most cases, fatigue cracks are likely to initiate in the surface of metallic components. Therefore, optimization of surface microstructures and properties can effectively improve the reliability of parts and prolong the service lifetime of components (Roland et al. in Scripta Mater. 54:1949–1954, 2006 [1]; Peyreet al. in Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 210(1–2):(102–113), 1996 [2]).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater. 54(11), 1949–1954 (2006)CrossRef T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater. 54(11), 1949–1954 (2006)CrossRef
2.
go back to reference P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade, Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 210(1–2), 102–113 (1996) P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade, Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 210(1–2), 102–113 (1996)
3.
go back to reference S.H. Luo, Y.H. Li, L.C. Zhou, X.F. Nie, G.Y. He, Y.Q. Li, W.F. He, Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater. Des. 104, 320–326 (2016)CrossRef S.H. Luo, Y.H. Li, L.C. Zhou, X.F. Nie, G.Y. He, Y.Q. Li, W.F. He, Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater. Des. 104, 320–326 (2016)CrossRef
4.
go back to reference S.H. Luo, X.F. Nie, L.C. Zhou, X. You, W.F. He, Y.H. Li, Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy. Surf. Coat. Technol. 311, 337–343 (2017)CrossRef S.H. Luo, X.F. Nie, L.C. Zhou, X. You, W.F. He, Y.H. Li, Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy. Surf. Coat. Technol. 311, 337–343 (2017)CrossRef
5.
go back to reference R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45(2), 103–189 (2000)CrossRef R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45(2), 103–189 (2000)CrossRef
6.
go back to reference C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int. J. Fatigue 24(10), 1021–1036 (2002)CrossRef C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int. J. Fatigue 24(10), 1021–1036 (2002)CrossRef
7.
go back to reference L.C. Zhou, Y.H. Li, W.F. He, G.Y. He, X.F. Nie, D.L. Chen, Z.L. Lai, Z.B. An, Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 578, 181–186 (2013)CrossRef L.C. Zhou, Y.H. Li, W.F. He, G.Y. He, X.F. Nie, D.L. Chen, Z.L. Lai, Z.B. An, Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 578, 181–186 (2013)CrossRef
8.
go back to reference A.K. Rai, R. Biswal, R.K. Gupta, R. Singh, S.K. Rai, K. Ranganathan, P. Ganesh, R. Kaul, K.S. Bindra, Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel. Surf. Coat. Technol. 358, 125–135 (2019)CrossRef A.K. Rai, R. Biswal, R.K. Gupta, R. Singh, S.K. Rai, K. Ranganathan, P. Ganesh, R. Kaul, K.S. Bindra, Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel. Surf. Coat. Technol. 358, 125–135 (2019)CrossRef
9.
go back to reference R.X. Zhang, X.F. Zhou, H.Y. Gao, S. Mankoci, Y. Liu, X.H. Sang, H.F. Qin, X.N. Hou, Z.C. Ren, G.L. Doll, A. Martini, Y.L. Dong, N. Sahai, C. Ye, The effects of laser shock peening on the mechanical properties and biomedical behavior of AZ31B magnesium alloy. Surf. Coat. Technol. 339, 48–56 (2018)CrossRef R.X. Zhang, X.F. Zhou, H.Y. Gao, S. Mankoci, Y. Liu, X.H. Sang, H.F. Qin, X.N. Hou, Z.C. Ren, G.L. Doll, A. Martini, Y.L. Dong, N. Sahai, C. Ye, The effects of laser shock peening on the mechanical properties and biomedical behavior of AZ31B magnesium alloy. Surf. Coat. Technol. 339, 48–56 (2018)CrossRef
10.
go back to reference X. Pan, S. Guo, Z. Tian, P. Liu, L. Dou, X. Wang, Z. An, L. Zhou, Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc. Surf. Coat. Technol. 126829 (2021) X. Pan, S. Guo, Z. Tian, P. Liu, L. Dou, X. Wang, Z. An, L. Zhou, Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc. Surf. Coat. Technol. 126829 (2021)
11.
go back to reference Y. Yang, W.F. Zhou, B.Q. Chen, Z.P. Tong, L. Chen, X.D. Ren, Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening. Int. J. Fatigue 136 (2020) Y. Yang, W.F. Zhou, B.Q. Chen, Z.P. Tong, L. Chen, X.D. Ren, Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening. Int. J. Fatigue 136 (2020)
12.
go back to reference M. Kahlin, H. Ansell, D. Basu, A. Kerwin, L. Newton, B. Smith, J.J. Moverare, Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int. J. Fatigue 134 (2020) M. Kahlin, H. Ansell, D. Basu, A. Kerwin, L. Newton, B. Smith, J.J. Moverare, Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int. J. Fatigue 134 (2020)
13.
go back to reference Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4–5), 753–782 (2004)CrossRef Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4–5), 753–782 (2004)CrossRef
14.
go back to reference G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. Royal Soc. London 145(855), 362–387 (1934) G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. Royal Soc. London 145(855), 362–387 (1934)
15.
go back to reference G.I. Taylor, Plastic Strain in Metals (1938) G.I. Taylor, Plastic Strain in Metals (1938)
16.
go back to reference J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater. 48(8), 1009–1015 (2003)CrossRef J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater. 48(8), 1009–1015 (2003)CrossRef
17.
go back to reference C. Domain, G. Monnet, Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys. Rev. Lett. 95(21) (2005) C. Domain, G. Monnet, Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys. Rev. Lett. 95(21) (2005)
18.
go back to reference M. Tang, L.P. Kubin, G.R. Canova, Dislocation mobility and the mechanical response of BCC single crystals: a mesoscopic approach. Acta Mater. 46(9), 3221–3235 (1998)CrossRef M. Tang, L.P. Kubin, G.R. Canova, Dislocation mobility and the mechanical response of BCC single crystals: a mesoscopic approach. Acta Mater. 46(9), 3221–3235 (1998)CrossRef
19.
go back to reference G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. Royal Soc. London. Ser. A 145(855), 362–387 (1934) G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. Royal Soc. London. Ser. A 145(855), 362–387 (1934)
20.
go back to reference G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938) G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)
21.
go back to reference M.F. Ashby, The deformation of plastically non-homogeneous materials. Phil. Mag. 21(170), 399–424 (1970)CrossRef M.F. Ashby, The deformation of plastically non-homogeneous materials. Phil. Mag. 21(170), 399–424 (1970)CrossRef
22.
go back to reference J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)CrossRef J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)CrossRef
23.
go back to reference H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)CrossRef H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)CrossRef
24.
go back to reference N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)CrossRef N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)CrossRef
25.
go back to reference S. Qu, A conventional theory of mechanism-based strain gradient plasticity (2004) S. Qu, A conventional theory of mechanism-based strain gradient plasticity (2004)
26.
go back to reference J. Li, A. Soh, Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39, 88–102 (2012)CrossRef J. Li, A. Soh, Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39, 88–102 (2012)CrossRef
27.
go back to reference N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji, V. Vignal, Finite element analysis of laser shock peening of 2050–T8 aluminum alloy. Int. J. Fatigue 70, 480–489 (2015)CrossRef N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji, V. Vignal, Finite element analysis of laser shock peening of 2050–T8 aluminum alloy. Int. J. Fatigue 70, 480–489 (2015)CrossRef
28.
go back to reference W. Braisted, R. Brockman, Finite element simulation of laser shock peening. Int. J. Fatigue 21(7), 719–724 (1999)CrossRef W. Braisted, R. Brockman, Finite element simulation of laser shock peening. Int. J. Fatigue 21(7), 719–724 (1999)CrossRef
29.
go back to reference P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham, R. Fabbro, FEM simulation of residual stresses induced by laser peening. Euro. Phys. J. Appl. Phys. 23(2), 83–88 (2003)CrossRef P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham, R. Fabbro, FEM simulation of residual stresses induced by laser peening. Euro. Phys. J. Appl. Phys. 23(2), 83–88 (2003)CrossRef
30.
go back to reference Y. Hu, Z. Yao, J. Hu, 3-D FEM simulation of laser shock processing. Surf. Coat. Technol. 201(3), 1426–1435 (2006)CrossRef Y. Hu, Z. Yao, J. Hu, 3-D FEM simulation of laser shock processing. Surf. Coat. Technol. 201(3), 1426–1435 (2006)CrossRef
31.
go back to reference J. Li, S. Chen, X. Wu, A. Soh, J. Lu, The main factor influencing the tensile properties of surface nano-crystallized graded materials. Mater. Sci. Eng. A 527(26), 7040–7044 (2010)CrossRef J. Li, S. Chen, X. Wu, A. Soh, J. Lu, The main factor influencing the tensile properties of surface nano-crystallized graded materials. Mater. Sci. Eng. A 527(26), 7040–7044 (2010)CrossRef
32.
go back to reference B. Babu, L.-E. Lindgren, Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int. J. Plast. 50, 94–108 (2013)CrossRef B. Babu, L.-E. Lindgren, Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int. J. Plast. 50, 94–108 (2013)CrossRef
33.
go back to reference T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587–1590 (2011)CrossRef T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587–1590 (2011)CrossRef
34.
go back to reference Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Extra strengthening and work hardening in gradient nanotwinned metals. Science 362(6414) (2018) Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Extra strengthening and work hardening in gradient nanotwinned metals. Science 362(6414) (2018)
35.
go back to reference P.F. Wang, Z. Han, K. Lu, Enhanced tribological performance of a gradient nanostructured interstitial-free steel. Wear 402, 100–108 (2018)CrossRef P.F. Wang, Z. Han, K. Lu, Enhanced tribological performance of a gradient nanostructured interstitial-free steel. Wear 402, 100–108 (2018)CrossRef
36.
go back to reference N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef
37.
go back to reference J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)CrossRef J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)CrossRef
38.
go back to reference W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)CrossRef W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)CrossRef
39.
go back to reference D. Liu, Y. He, X. Tang, H. Ding, P. Hu, P. Cao, Size effects in the torsion of microscale copper wires: experiment and analysis. Scr. Mater. 66(6), 406–409 (2012)CrossRef D. Liu, Y. He, X. Tang, H. Ding, P. Hu, P. Cao, Size effects in the torsion of microscale copper wires: experiment and analysis. Scr. Mater. 66(6), 406–409 (2012)CrossRef
40.
go back to reference A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47(5), 1597–1611 (1999)CrossRef A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47(5), 1597–1611 (1999)CrossRef
41.
go back to reference B.W. Zhang, L.C. Zhou, Y. Sun, W.F. He, Y.Z. Chen, Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Mol. Simul. 44(15), 1252–1260 (2018)CrossRef B.W. Zhang, L.C. Zhou, Y. Sun, W.F. He, Y.Z. Chen, Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Mol. Simul. 44(15), 1252–1260 (2018)CrossRef
42.
go back to reference F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. De la Rubia, M. Seager, Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc. Natl. Acad. Sci. U.S.A. 99(9), 5777–5782 (2002)CrossRef F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. De la Rubia, M. Seager, Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc. Natl. Acad. Sci. U.S.A. 99(9), 5777–5782 (2002)CrossRef
43.
go back to reference Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22) (2001) Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22) (2001)
44.
go back to reference D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, D.J. Srolovitz, Crystal-melt interfacial free energies in HCP metals: A molecular dynamics study of Mg. Phys. Rev. B 73(2) (2006) D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, D.J. Srolovitz, Crystal-melt interfacial free energies in HCP metals: A molecular dynamics study of Mg. Phys. Rev. B 73(2) (2006)
45.
go back to reference K.W. Gao, L.J. Qiao, W.Y. Chu, In situ TEM observation of crack healing in alpha-Fe. Scripta Mater. 44(7), 1055–1059 (2001)CrossRef K.W. Gao, L.J. Qiao, W.Y. Chu, In situ TEM observation of crack healing in alpha-Fe. Scripta Mater. 44(7), 1055–1059 (2001)CrossRef
46.
go back to reference Q.P. Zhong, Z. ZH, Fractography (Higher Education Press, Beijing, 2006) Q.P. Zhong, Z. ZH, Fractography (Higher Education Press, Beijing, 2006)
47.
go back to reference G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, P.M. Gullett, A molecular dynamics study of void growth and coalescence in single crystal nickel. Int. J. Plast. 22(2), 257–278 (2006)CrossRef G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, P.M. Gullett, A molecular dynamics study of void growth and coalescence in single crystal nickel. Int. J. Plast. 22(2), 257–278 (2006)CrossRef
48.
go back to reference L. Chang, C.Y. Zhou, L.L. Wen, J. Li, X.H. He, Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Comput. Mater. Sci. 128, 348–358 (2017)CrossRef L. Chang, C.Y. Zhou, L.L. Wen, J. Li, X.H. He, Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Comput. Mater. Sci. 128, 348–358 (2017)CrossRef
Metadata
Title
Mechanical Behavior and the Strengthening Mechanism of LSP-Induced Gradient Microstructure in Metal Materials
Authors
Liucheng Zhou
Weifeng He
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1747-8_6

Premium Partners