Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

24-02-2024

Mechanical Characteristics of Thermoplastic Polymers for 3d Printed Hybrid Structures

Authors: O. Bulderberga, E. Zīle, R. Joffe, J. Sevcenko, A. Aniskevich

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study focuses on the mechanical properties of different thermoplastic polymers that have been processed by fused filament fabrication, including basic (PLA, PC, PA, ABS, PP, CPE, PET-G), industrial (PEI, PEKK), and with added functionality (thermochromic, electrostatic discharge, electrically conductive). Analysis of the porosity of specimens was performed by X-ray microtomography and optical microscopy of a fractured surface, both giving similar results. During printing, a non-equilibrium polymer macromolecular structure was created. The stiffness and strength of the printed specimens were impacted by the stabilization of the macromolecular structure over time. The maximum values were reached for amorphous materials after 24 hours and for semi-crystalline materials after 160 hours. Tensile properties of “as-received” filaments, extruded mono-fibers, and unidirectional printed specimens were compared. In most cases, the elastic modulus of “as-received” filaments was lower than that of the extruded mono-fibers by 12% on average. Loading rate significantly affects both elastic modulus and strength, confirming the essential contribution of the viscoelastic component to the whole deformability of polymers. The elastic modulus and strength increased by 20 and 80%, respectively. The effects of layer thickness and nozzle diameter on mechanical properties were investigated. The compatibility of different polymer types for hybrid structures was evaluated in the adhesion tests. Tests showed that adhesion at hybrid PLA contact is only slightly affected by the presence of colourant additives in one of the parts. However, approx. 10 times adhesion reduction was observed when one of the parts contained conductive particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Kantaros, E. Soulis, T. Ganetsos, and F. I. T. Petrescu, “Applying a combination of cutting-edge industry 4.0 processes towards fabricating a customized component,” Processes, 11, No. 5, 1385 (2023). A. Kantaros, E. Soulis, T. Ganetsos, and F. I. T. Petrescu, “Applying a combination of cutting-edge industry 4.0 processes towards fabricating a customized component,” Processes, 11, No. 5, 1385 (2023).
2.
go back to reference J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120-133 (2017).CrossRef J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120-133 (2017).CrossRef
3.
go back to reference B. Kumar, A. Raina, R.P. Singh, and M. I. U. Haq, In: D. Panchal, M. Tyagi, A. Sachdeva and D. Pamucar (eds.), Mechanical Properties for 3D Printing of Polymers through Fused Deposition Modelling, Ch. 27, Optimization of Industrial Systems (2022). B. Kumar, A. Raina, R.P. Singh, and M. I. U. Haq, In: D. Panchal, M. Tyagi, A. Sachdeva and D. Pamucar (eds.), Mechanical Properties for 3D Printing of Polymers through Fused Deposition Modelling, Ch. 27, Optimization of Industrial Systems (2022).
5.
go back to reference S. D. Nath and S. Nilufar, “An overview of additive manufacturing of polymers and associated composites,” Polymers, 12, No. 11, 2719 (2020). S. D. Nath and S. Nilufar, “An overview of additive manufacturing of polymers and associated composites,” Polymers, 12, No. 11, 2719 (2020).
6.
go back to reference A. Aniskevich, E. Zīle, O. Bulderberga, and D. Zeleniakiene, “Mechanical characterisation of some polymers used in 3D printing,” Proc. 20th Eur. Conf. on Composite Materials: Composites Meet Sustainability (2022). A. Aniskevich, E. Zīle, O. Bulderberga, and D. Zeleniakiene, “Mechanical characterisation of some polymers used in 3D printing,” Proc. 20th Eur. Conf. on Composite Materials: Composites Meet Sustainability (2022).
7.
go back to reference A. Aniskevich, O. Bulderberga, and L. Stankevics, “Moisture sorption and degradation of polymer filaments used in 3D printing,” Polymers, 15, No. 12, 2600 (2023). A. Aniskevich, O. Bulderberga, and L. Stankevics, “Moisture sorption and degradation of polymer filaments used in 3D printing,” Polymers, 15, No. 12, 2600 (2023).
8.
go back to reference I. Bute, S. Tarasovs, S. Vidinejevs, L. Vevere, J. Sevcenko, and A. Aniskevich, “Thermal properties of 3D printed products from the most common polymers,” Int. J. Adv. Manufacturing Technol., 124, No. 7, 2739-2753 (2023).CrossRef I. Bute, S. Tarasovs, S. Vidinejevs, L. Vevere, J. Sevcenko, and A. Aniskevich, “Thermal properties of 3D printed products from the most common polymers,” Int. J. Adv. Manufacturing Technol., 124, No. 7, 2739-2753 (2023).CrossRef
9.
go back to reference T. Glaskova-Kuzmina, J. Jātnieks, A. Aniskevich, J. Sevcenko, A. Sarakovskis, and A. Zolotarjovs, “Effect of post-printing cooling conditions on the properties of ULTEM printed parts,” Polymers, 15, No. 2, 324 (2023). T. Glaskova-Kuzmina, J. Jātnieks, A. Aniskevich, J. Sevcenko, A. Sarakovskis, and A. Zolotarjovs, “Effect of post-printing cooling conditions on the properties of ULTEM printed parts,” Polymers, 15, No. 2, 324 (2023).
10.
go back to reference S. A. Bochkareva, V. O. Alexenko, B. A. Lyukshin, D. G. Buslovich, and S. V. Panin, “Effect of the thermal conductivity of mated materials on the wear intensity of a polymerpolymer friction pair,” Mech. Compos. Mater., 58, No. 3, 307-318 (2022).ADSCrossRef S. A. Bochkareva, V. O. Alexenko, B. A. Lyukshin, D. G. Buslovich, and S. V. Panin, “Effect of the thermal conductivity of mated materials on the wear intensity of a polymerpolymer friction pair,” Mech. Compos. Mater., 58, No. 3, 307-318 (2022).ADSCrossRef
11.
go back to reference S. A. Bochkareva, N. Yu. Grishaeva, D. G Buslovich, L. A. Kornienko, B. A. Lyukshin, S. V. Panin, I. L. Panov, and Yu. V. Dontsov, “Development of a wear-resistant extrudable composite material based on an ultrahigh-molecular polyethylene with predetermined properties,” Mech. Compos. Mater., 56, No. 1, 15-26 (2020).ADSCrossRef S. A. Bochkareva, N. Yu. Grishaeva, D. G Buslovich, L. A. Kornienko, B. A. Lyukshin, S. V. Panin, I. L. Panov, and Yu. V. Dontsov, “Development of a wear-resistant extrudable composite material based on an ultrahigh-molecular polyethylene with predetermined properties,” Mech. Compos. Mater., 56, No. 1, 15-26 (2020).ADSCrossRef
12.
go back to reference M. Spoerk, C. Holzer, and J. Gonzalez-Gutierrez, “Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” J. Appl. Polymer Sci., 137, No. 12, 48545 (2020). M. Spoerk, C. Holzer, and J. Gonzalez-Gutierrez, “Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” J. Appl. Polymer Sci., 137, No. 12, 48545 (2020).
13.
go back to reference A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti and M. S. Bishnoi, “Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts,” World J. Eng., 16, No. 4, 550-559 (2019). A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti and M. S. Bishnoi, “Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts,” World J. Eng., 16, No. 4, 550-559 (2019).
14.
go back to reference E. Zīle, D. Zeleniakiene, and A. Aniskevich, “Characterization of polylactic acid parts produced using the fused deposition modelling,” Mech. Compos. Mater., 58, 169-180 (2022).ADSCrossRef E. Zīle, D. Zeleniakiene, and A. Aniskevich, “Characterization of polylactic acid parts produced using the fused deposition modelling,” Mech. Compos. Mater., 58, 169-180 (2022).ADSCrossRef
15.
go back to reference K. Abouzaid, D. Bassir, S. Guessasma, and H. Yue, “Modelling the process of fused deposition modelling and the effect of temperature on the mechanical, roughness, and porosity properties of resulting composite products,” Mech. Compos. Mater., 56, No. 6, 805-816 (2021).ADSCrossRef K. Abouzaid, D. Bassir, S. Guessasma, and H. Yue, “Modelling the process of fused deposition modelling and the effect of temperature on the mechanical, roughness, and porosity properties of resulting composite products,” Mech. Compos. Mater., 56, No. 6, 805-816 (2021).ADSCrossRef
16.
go back to reference V. E. Kuznetsov, A. G. Tavitov, O. D. Urzhumtsev, M. V. Mikhalin, and A. I. Moiseev, “Hardware factors influencing strength of parts obtained by fused filament fabrication,” Polymers, 11, No. 11, 1870 (2019). V. E. Kuznetsov, A. G. Tavitov, O. D. Urzhumtsev, M. V. Mikhalin, and A. I. Moiseev, “Hardware factors influencing strength of parts obtained by fused filament fabrication,” Polymers, 11, No. 11, 1870 (2019).
17.
go back to reference A. El Magri, S. Vaudreuil, A. Ben Ayad, A. El Hakimi, E. O. Rabie, and D. Amegouz, “Effect of printing parameters on tensile, thermal and structural properties of 3D-printed poly (ether ketone ketone) PEKK material using fused deposition modeling,” J. Appl. Polymer Sci., 140, No. 29 (2023). A. El Magri, S. Vaudreuil, A. Ben Ayad, A. El Hakimi, E. O. Rabie, and D. Amegouz, “Effect of printing parameters on tensile, thermal and structural properties of 3D-printed poly (ether ketone ketone) PEKK material using fused deposition modeling,” J. Appl. Polymer Sci., 140, No. 29 (2023).
18.
go back to reference G. Gao, F. Xu, J. Xu, and Z. Liu, “Study of material color influences on mechanical characteristics of fused deposition modeling parts,” Materials, 15, No. 19, 7039 (2022). G. Gao, F. Xu, J. Xu, and Z. Liu, “Study of material color influences on mechanical characteristics of fused deposition modeling parts,” Materials, 15, No. 19, 7039 (2022).
19.
go back to reference D. Frunzaverde, V. Cojocaru, C-R. Ciubotariu, C-O. Miclosina, D. D. Ardeljan, E. F. Ignat, and G. Marginean, “The Influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens,” Polymers, 14, No. 10, 1978 (2022). D. Frunzaverde, V. Cojocaru, C-R. Ciubotariu, C-O. Miclosina, D. D. Ardeljan, E. F. Ignat, and G. Marginean, “The Influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens,” Polymers, 14, No. 10, 1978 (2022).
20.
go back to reference A. Dijkshoorn, M. Schouten, S. Stramigioli, and G. Krijnen, “Modelling of anisotropic electrical conduction in layered structures 3D-Printed with fused deposition modelling,” Sensors, 21, No. 11, 3710 (2021). A. Dijkshoorn, M. Schouten, S. Stramigioli, and G. Krijnen, “Modelling of anisotropic electrical conduction in layered structures 3D-Printed with fused deposition modelling,” Sensors, 21, No. 11, 3710 (2021).
21.
go back to reference G. Spinelli, R. Kotsilkova, E. Ivanov, I. Petrova-Doycheva, D. Menseidov, V. Georgiev, R. Di Maio, and C. Silvestre, “Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(lactic) acid composites filled with carbon nanotubes and graphene,” Nanomaterials, 10, No. 1, 35 (2020). G. Spinelli, R. Kotsilkova, E. Ivanov, I. Petrova-Doycheva, D. Menseidov, V. Georgiev, R. Di Maio, and C. Silvestre, “Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(lactic) acid composites filled with carbon nanotubes and graphene,” Nanomaterials, 10, No. 1, 35 (2020).
22.
go back to reference S. Stankevich, J. Sevcenko, O. Bulderberga, A. Dutovs, D. Erts, M. Piskunovs, V. Ivanovs, V. Ivanov, and A. Aniskevich, “Electrical resistivity of 3D-printed polymer elements,” Polymers, 15, No. 14, 2988 (2023). S. Stankevich, J. Sevcenko, O. Bulderberga, A. Dutovs, D. Erts, M. Piskunovs, V. Ivanovs, V. Ivanov, and A. Aniskevich, “Electrical resistivity of 3D-printed polymer elements,” Polymers, 15, No. 14, 2988 (2023).
23.
go back to reference R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo, and F. Fraternali, “Multi-material additive manufacturing of sustainable innovative materials and structures,” Polymers, 11, No. 1, 62 (2019). R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo, and F. Fraternali, “Multi-material additive manufacturing of sustainable innovative materials and structures,” Polymers, 11, No. 1, 62 (2019).
24.
go back to reference H. Watschke, K. Hilbig, and T. Vietor, “ Design and characterization of electrically conductive structures additively manufactured by material extrusion,” Appl. Sci., 9, No. 4, 779 (2019). H. Watschke, K. Hilbig, and T. Vietor, “ Design and characterization of electrically conductive structures additively manufactured by material extrusion,” Appl. Sci., 9, No. 4, 779 (2019).
25.
go back to reference S. Kumar, R. Singh, T. Singh, and A Batish, “Fused filament fabrication: A comprehensive review ,” J. Thermoplastic Compos. Mater., 36, No. 2, 794-814 (2023).CrossRef S. Kumar, R. Singh, T. Singh, and A Batish, “Fused filament fabrication: A comprehensive review ,” J. Thermoplastic Compos. Mater., 36, No. 2, 794-814 (2023).CrossRef
26.
go back to reference O. Bulderberga, and A. Aniskevich, “Time stabilisation of mechanical properties of single extruded fiber produced by a 3D printer,” Conf. Report Baltic Polymer Symposium (2022). O. Bulderberga, and A. Aniskevich, “Time stabilisation of mechanical properties of single extruded fiber produced by a 3D printer,” Conf. Report Baltic Polymer Symposium (2022).
27.
go back to reference D. M. Bigg, “Mechanical property enhancement of semicrystalline polymers — A review,” Polymer Eng. & Sci., 28, No. 13, 830-841 (1988).CrossRef D. M. Bigg, “Mechanical property enhancement of semicrystalline polymers — A review,” Polymer Eng. & Sci., 28, No. 13, 830-841 (1988).CrossRef
Metadata
Title
Mechanical Characteristics of Thermoplastic Polymers for 3d Printed Hybrid Structures
Authors
O. Bulderberga
E. Zīle
R. Joffe
J. Sevcenko
A. Aniskevich
Publication date
24-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10172-8

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners