Skip to main content
Top
Published in: Journal of Materials Science 17/2014

01-09-2014

Mechanical fabrication of reactive metal laminate powders

Authors: A. K. Stover, N. M. Krywopusk, J. D. Gibbins, T. P. Weihs

Published in: Journal of Materials Science | Issue 17/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new mechanical method for creating reactive laminate powders has been developed using a two-step process; in the first step bulk reactive materials are created by cold-rolling stacks of alternating sheets of nickel and aluminum into foils with bilayer thicknesses ranging from 2.9 to 1.8 μm. This step establishes the average reactant spacing and, hence, the reactivity of the material. In the second step the rolled foils are then ground into laminate powders and sieved based on their diameters, which range from 850 to 53 μm. Our processing methodology allows the particle size and the reactant spacing to be varied independently. Powders made by this method have heat releases within a differential scanning calorimeter (DSC) that vary with the average reactant spacing, similar to rolled and sputter deposited foils. However, the measured heats also vary with the average diameter of the powders, as smaller particles show a systematic decrease in heat. Furthermore, this effect is magnified for the powders with the coarsest microstructure, as they show the largest drop in DSC heat release. The physical densities also vary as a function of particle size. The powders with the largest average bilayer thickness become Ni-rich at the smallest particle sizes, powders with the next finest average bilayer thickness become Al-rich, and powders with the smallest average bilayer thickness show little variation. We attribute the particle size dependence of the DSC heats to small powders being broken from regions of the original rolled foils that contain a high volume fraction of Ni-rich and Al-rich bilayers. These microstructural and chemical variations alter the exothermic reactions that are seen during slow heating in a DSC, as well as the heats of reaction that are measured in the DSC as a function of powder size. We support this hypothesis of non-random breakup during grinding by simulating bimodal distributions of bilayer chemistry within powders and modeling their densities and heats of reaction. The simulations are compared with measured values. Finally, we normalize the effects of particle size and bilayer thickness by plotting the measured DSC heats of reaction versus the number of bilayers per particle; the values merge toward one curve, with the largest decrease in heat occurring when there are fewer than 150 bilayers in each particle. This ratio proves useful when selecting particles for particular applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goldschmidt H (1908) New thermite reactions. Iron Age 82:232 Goldschmidt H (1908) New thermite reactions. Iron Age 82:232
2.
3.
go back to reference Fischer SH, Grubelich MC (1996) A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. In: AIAA/ASME/SAE/ASEE joint propulsion conference proceedings, pp 1–15 Fischer SH, Grubelich MC (1996) A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. In: AIAA/ASME/SAE/ASEE joint propulsion conference proceedings, pp 1–15
4.
go back to reference Badiola C, Schoenitz M, Zhu X, Dreizin EL (2009) Nanocomposite thermite powders prepared by cryomilling. J Alloys Compd 488:386–391CrossRef Badiola C, Schoenitz M, Zhu X, Dreizin EL (2009) Nanocomposite thermite powders prepared by cryomilling. J Alloys Compd 488:386–391CrossRef
5.
go back to reference Petrantoni M et al (2010) Multilayered Al/CuO thermite formation by reactive magnetron sputtering: nano versus micro. J Appl Phys 108:084323CrossRef Petrantoni M et al (2010) Multilayered Al/CuO thermite formation by reactive magnetron sputtering: nano versus micro. J Appl Phys 108:084323CrossRef
6.
go back to reference Hunt EM, Pantoya ML (2005) Ignition dynamics and activation energies of metallic thermites: from nano- to micron-scale particulate Composites. J Appl Phys 98:034909CrossRef Hunt EM, Pantoya ML (2005) Ignition dynamics and activation energies of metallic thermites: from nano- to micron-scale particulate Composites. J Appl Phys 98:034909CrossRef
7.
go back to reference Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Control of structural refinement and composition in Al–MoO3 nanocomposites prepared by arrested reactive milling. Propellants Explos Pyrotech 31:382–389CrossRef Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Control of structural refinement and composition in Al–MoO3 nanocomposites prepared by arrested reactive milling. Propellants Explos Pyrotech 31:382–389CrossRef
8.
go back to reference Pantoya ML, Hunt ME (2009) Nanochargers: energetic materials for energy storage. Appl Phys Lett 95:253101CrossRef Pantoya ML, Hunt ME (2009) Nanochargers: energetic materials for energy storage. Appl Phys Lett 95:253101CrossRef
9.
go back to reference Menon L et al (2004) Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl Phys Lett 84:4735CrossRef Menon L et al (2004) Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl Phys Lett 84:4735CrossRef
10.
go back to reference Manesh NA, Basu S, Kumar R (2010) Experimental flame speed in multi-layered nano-energetic materials. Combust Flame 157:476–480CrossRef Manesh NA, Basu S, Kumar R (2010) Experimental flame speed in multi-layered nano-energetic materials. Combust Flame 157:476–480CrossRef
11.
go back to reference Eizadjou M, Kazemi Talachi A, Danesh Manesh H, Shakur Shahabi H, Janghorban K (2008) Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol 68:2003–2009CrossRef Eizadjou M, Kazemi Talachi A, Danesh Manesh H, Shakur Shahabi H, Janghorban K (2008) Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol 68:2003–2009CrossRef
12.
go back to reference Rossi C et al (2007) Nanoenergetic Materials for MEMS: a Review. J Electromech Syst 16:919–931CrossRef Rossi C et al (2007) Nanoenergetic Materials for MEMS: a Review. J Electromech Syst 16:919–931CrossRef
13.
go back to reference Tanaka S et al (2008) Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sens Actuators A 144:361–366CrossRef Tanaka S et al (2008) Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sens Actuators A 144:361–366CrossRef
14.
go back to reference Staley CS et al (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermite. J Micromech Microeng 21:115015CrossRef Staley CS et al (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermite. J Micromech Microeng 21:115015CrossRef
15.
go back to reference Weihs TP (2013) Fabrication and characterization of reactive multilayer films and foils. In: Barmak K, Coffey KR (eds) Metallic films for electronic, magnetic, optical and thermal applications: structure, processing and properties, chap 6. Woodhead Publishing, Swaston Weihs TP (2013) Fabrication and characterization of reactive multilayer films and foils. In: Barmak K, Coffey KR (eds) Metallic films for electronic, magnetic, optical and thermal applications: structure, processing and properties, chap 6. Woodhead Publishing, Swaston
16.
go back to reference Floro JA (1986) Propagation of explosive crystallization in thin Rh–Si multilayer films. J Vac Sci Technol 4:631CrossRef Floro JA (1986) Propagation of explosive crystallization in thin Rh–Si multilayer films. J Vac Sci Technol 4:631CrossRef
17.
go back to reference Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87:1255–1263CrossRef Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87:1255–1263CrossRef
18.
go back to reference Ma E, Thompson CV, Clevenger LA, Tu KN (1990) Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl Phys Lett 57:1262CrossRef Ma E, Thompson CV, Clevenger LA, Tu KN (1990) Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl Phys Lett 57:1262CrossRef
19.
go back to reference Anselmi-Tamburini U, Munir ZA (1989) The propagation of a solid-state combustion wave in Ni–Al foils. J Appl Phys 66:5039CrossRef Anselmi-Tamburini U, Munir ZA (1989) The propagation of a solid-state combustion wave in Ni–Al foils. J Appl Phys 66:5039CrossRef
20.
go back to reference Wickersham CE (1988) Explosive crystallization in zirconium/silicon multilayers. J Vac Sci Technol 6:1699CrossRef Wickersham CE (1988) Explosive crystallization in zirconium/silicon multilayers. J Vac Sci Technol 6:1699CrossRef
21.
go back to reference Dyer TS, Munir ZA, Ruth V (1994) The combustion synthesis of multilayer NiAl systems. Scr Metall Mater 30:1281–1286CrossRef Dyer TS, Munir ZA, Ruth V (1994) The combustion synthesis of multilayer NiAl systems. Scr Metall Mater 30:1281–1286CrossRef
22.
go back to reference Reiss ME et al (1999) Self-propagating formation reactions in Nb/Si multilayers. Mater Sci Eng A 261:217–222CrossRef Reiss ME et al (1999) Self-propagating formation reactions in Nb/Si multilayers. Mater Sci Eng A 261:217–222CrossRef
24.
go back to reference Eakins D, Thadhani N (2012) Shock compression of reactive powder mixtures. Int Mater Rev 54:181–213CrossRef Eakins D, Thadhani N (2012) Shock compression of reactive powder mixtures. Int Mater Rev 54:181–213CrossRef
25.
go back to reference Sieber H, Wilde G, Perepezko J (1999) Thermally activated amorphous phase formation in cold-rolled multilayers of Al–Ni, Al–Ta, Al–Fe and Zr–Cu. J Non Cryst Solids 250–252:611–615CrossRef Sieber H, Wilde G, Perepezko J (1999) Thermally activated amorphous phase formation in cold-rolled multilayers of Al–Ni, Al–Ta, Al–Fe and Zr–Cu. J Non Cryst Solids 250–252:611–615CrossRef
26.
go back to reference Sieber H, Park JS, Weissmüller J, Perepezko JH (2001) Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers. Acta Mater 49:1139–1151CrossRef Sieber H, Park JS, Weissmüller J, Perepezko JH (2001) Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers. Acta Mater 49:1139–1151CrossRef
27.
go back to reference Hebert RJ, Perepezko JH (2004) Deformation-induced synthesis and structural transformations of metallic multilayers. Scr Mater 50:807–812CrossRef Hebert RJ, Perepezko JH (2004) Deformation-induced synthesis and structural transformations of metallic multilayers. Scr Mater 50:807–812CrossRef
28.
go back to reference Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef
29.
go back to reference Mozaffari A, Manesh HD, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloys Compd 489:103–109CrossRef Mozaffari A, Manesh HD, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloys Compd 489:103–109CrossRef
30.
go back to reference Qiu X et al (2009) Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metall Mater Trans A 40:1541–1546CrossRef Qiu X et al (2009) Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metall Mater Trans A 40:1541–1546CrossRef
31.
go back to reference Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah MR (2010) Diffusive versus explosive reaction at the nanoscale. J Phys Chem C 114:9191–9195CrossRef Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah MR (2010) Diffusive versus explosive reaction at the nanoscale. J Phys Chem C 114:9191–9195CrossRef
32.
go back to reference Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10:843–859CrossRef Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10:843–859CrossRef
33.
go back to reference Jian G, Chowdhury S, Sullivan K, Zachariah MR (2013) Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160:432–437CrossRef Jian G, Chowdhury S, Sullivan K, Zachariah MR (2013) Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160:432–437CrossRef
34.
go back to reference Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: III. Ingredients for a general multidimensional formulation. Combust Flame 157:1154–1166CrossRef Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: III. Ingredients for a general multidimensional formulation. Combust Flame 157:1154–1166CrossRef
35.
go back to reference Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: I. Basic formulation. Combust Flame 157:288–295CrossRef Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: I. Basic formulation. Combust Flame 157:288–295CrossRef
36.
go back to reference Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: II. Normal propagation. Combust Flame 157:436–445CrossRef Salloum M, Knio OM (2010) Simulation of reactive nanolaminates using reduced models: II. Normal propagation. Combust Flame 157:436–445CrossRef
37.
go back to reference Mann AB et al (1997) Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J Appl Phys 82:1178CrossRef Mann AB et al (1997) Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J Appl Phys 82:1178CrossRef
38.
go back to reference Alawieh L, Knio OM, Weihs TP (2011) Effect of thermal properties on self-propagating fronts in reactive nanolaminates. J Appl Phys 110:013509CrossRef Alawieh L, Knio OM, Weihs TP (2011) Effect of thermal properties on self-propagating fronts in reactive nanolaminates. J Appl Phys 110:013509CrossRef
39.
go back to reference Jayaraman S, Knio OM, Mann AB, Weihs TP (1999) Numerical predictions of oscillatory combustion in reactive multilayers. J Appl Phys 86:800CrossRef Jayaraman S, Knio OM, Mann AB, Weihs TP (1999) Numerical predictions of oscillatory combustion in reactive multilayers. J Appl Phys 86:800CrossRef
40.
go back to reference Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 98:064903CrossRef Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 98:064903CrossRef
41.
go back to reference Pantoya M, Granier J (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 30:53–62CrossRef Pantoya M, Granier J (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 30:53–62CrossRef
42.
go back to reference Knepper R et al (2009) Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys 105:083504CrossRef Knepper R et al (2009) Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys 105:083504CrossRef
43.
go back to reference Besnoin E, Cerutti S, Knio OM, Weihs TP (2002) Effect of reactant and product melting on self-propagating reactions in multilayer foils. J Appl Phys 92:5474CrossRef Besnoin E, Cerutti S, Knio OM, Weihs TP (2002) Effect of reactant and product melting on self-propagating reactions in multilayer foils. J Appl Phys 92:5474CrossRef
44.
go back to reference Rogachev AS et al (2004) Gasless combustion of Ti–Al bimetallic multilayer nanofoils. Combust Explos Shock Waves 40:166–171CrossRef Rogachev AS et al (2004) Gasless combustion of Ti–Al bimetallic multilayer nanofoils. Combust Explos Shock Waves 40:166–171CrossRef
45.
go back to reference Rogachev AS (2008) Exothermic reaction waves in multilayer nanofilms. Russ Chem Rev 77:21–37CrossRef Rogachev AS (2008) Exothermic reaction waves in multilayer nanofilms. Russ Chem Rev 77:21–37CrossRef
46.
go back to reference Bazyn T et al (2007) Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combust Sci Technol 179:457–476CrossRef Bazyn T et al (2007) Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combust Sci Technol 179:457–476CrossRef
47.
go back to reference Stamatis D, Jiang X, Beloni E, Dreizin EL (2010) Aluminum burn rate modifiers based on reactive nanocomposite powders. Propellants Explos Pyrotech 35:260–267CrossRef Stamatis D, Jiang X, Beloni E, Dreizin EL (2010) Aluminum burn rate modifiers based on reactive nanocomposite powders. Propellants Explos Pyrotech 35:260–267CrossRef
48.
go back to reference Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng A 299:1–15CrossRef Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng A 299:1–15CrossRef
49.
go back to reference Fritz GM, Joress H, Weihs TP (2011) Enabling and controlling slow reaction velocities in low-density compacts of multilayer reactive particles. Combust Flame 158:1084–1088CrossRef Fritz GM, Joress H, Weihs TP (2011) Enabling and controlling slow reaction velocities in low-density compacts of multilayer reactive particles. Combust Flame 158:1084–1088CrossRef
50.
go back to reference Michaelsen C, Barmak K, Weihs TP (1997) Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J Phys D 30:3167–3186CrossRef Michaelsen C, Barmak K, Weihs TP (1997) Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J Phys D 30:3167–3186CrossRef
51.
go back to reference Stover AK et al (2013) An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J Mater Sci 48:5917–5929CrossRef Stover AK et al (2013) An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J Mater Sci 48:5917–5929CrossRef
52.
go back to reference Boer RF, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals. Elsevier, Amsterdam Boer RF, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals. Elsevier, Amsterdam
Metadata
Title
Mechanical fabrication of reactive metal laminate powders
Authors
A. K. Stover
N. M. Krywopusk
J. D. Gibbins
T. P. Weihs
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8187-2

Other articles of this Issue 17/2014

Journal of Materials Science 17/2014 Go to the issue

Premium Partners